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Chapter 1

Introduction

Computational complexity theory is the branch of computer science concerned with inves-

tigating the efficiency of algorithms for solving computational problems. The fundamental

question in computational complexity theory is: how hard is it for a computer to solve

instances of a given problem? Much of the work in the 1960’s and 1970’s involved problems

with solutions of the form “yes” or “no,” so called decision problems. Among these problems

are a huge number of important ones including the boolean satisfiability problem, 3-Sat,

Clique, and Vertex Cover. Decision problems often have closely related versions called

optimization problems, which ask for a numeric solution rather than “yes” or “no.” For

example, the decision problem Clique asks if a certain graph G has a clique of size at least

k (for a certain value of k). The optimization version, Maximum Clique, asks instead for

the size of the largest clique of G.

The concept of NP-hardness1 makes precise the question of how hard it is for a computer

to solve instances of a given problem. Roughly speaking, NP-hard problems are those for

which no efficient algorithm could possibly exist unless P = NP . Many important optimiza-

tion and decision problems are NP-hard. Unlike decision problems, optimization problems

are natural candidates for polynomial time approximation algorithms. These efficient al-

gorithms get provably “close” to the optimal solution. In the search for approximation

algorithms, a parallel route to devising algorithmic results is the proof of inapproximability
1We do not define NP-hardness formally. See any introductory computer science text for a definition.
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results. An inapproximability result states that it is NP-hard to find an efficient algorithm

that achieves an approximate solution better than some bound.

In this work, we focus on the connections between approximation algorithms and inap-

proximability results. For a particular optimization problem, there is the direct connection:

approximation algorithms give lower bounds on how well we can do while inapproximability

results give upper bounds. We look for a deeper connection in the case of two techniques:

semidefinite programming, which has proved very successful in devising approximation algo-

rithms, and the Unique Games Conjecture, which has led to many inapproximability results.

Although on the surface these techniques seem to be unrelated, a series of recent papers

suggests otherwise. Is it possible that the Unique Games Conjecture exactly captures the

power of semidefinite programming? We state a conjecture formalizing this connection and

investigate this conjecture for a small set of problems.

While many of the techniques for proving that a decision problem is NP-hard are often

elementary and have been known for decades, proofs of most inapproximability results re-

quire more sophisticated techniques that have only been devised relatively recently. During

the 1990’s, the body of work relating to probabilistically checkable proofs (PCP), often

called the PCP theory or PCP theorems, came as a set of breakthrough results that gained

wide use in proving the inapproximability of many optimization versions of NP-hard prob-

lems. A rigorous treatment of the PCP theorems is beyond the scope of this work. During

the same decade, work on approximation algorithms took a leap forward with Goemans

and Williamson’s introduction of the technique of randomized rounding of semidefinite pro-

grams (SDPs) [GW95]. In the next chapter we will demonstrate and prove results about

approximation algorithms based on rounding SDPs.

Both directions of research on approximation—approximation algorithms and inap-

proximability results—have had important implications for constraint satisfaction problems

(CSPs). An instance of a CSP decision problem is a set of variables subject to a set of

constraints. The objective of CSP decision problem is to find an assignment to the variables

that satisfies all the constraints. The natural optimization version, Max CSP, is: given a

set of constraints, find an assignment that maximizes the number of satisfied constraints.
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A weighted version of this problem assigns weights to the constraints and the objective is

to find an assignment that maximizes the total weight of the satisfied constraints.

CSPs generalize many problems, including the boolean satisfiability problem already

mentioned. Subproblems of the boolean satisfiability problem include 3-Sat, MaxCut2,

and 2-Sat. While the decision problem 3-Sat was on Karp’s original list of NP-complete

problems in 1972, 2-Sat is in P , but Max 2-Sat, the optimization version, is NP-hard to

approximate to within any constant factor. H̊astad’s proof of this fact relies on the PCP

theory [Has97].

Goemans and Williamson considered some of these CSPs, including MaxCut and Max

2-Sat [GW95]. Before their work, various algorithms for MaxCut had been proposed,

yet none of them achieved approximation ratios with a constant term better than 1
2 , the

approximation ratio of the simple algorithm which randomly assigns vertices to the two

different sets. Goemans and Williamson improved this approximation ratio to .879. For

Max 2-Sat they improved the best known approximation ratio of 3
4 (which can be found

by picking a random assignment) to .879. As we will see in Section 2.2, Goemans and

Williamson’s technique is to create a semidefinite program which captures a relaxed version

of the instance they wish to solve. After solving this SDP optimally, they apply a simple

rounding technique.

Although the successes of the PCP theory have been widespread, in the special case of

2-CSPs, in which constraints are limited to acting on two variables, tight inapproximability

results have been harder to come by. The best known inapproximability result for Max

2-Sat says that it is 21/22-hard to approximate [Has97], leaving a gap between the lower

bound of .879 and upper bound of .955 (≈ 21/22).

In 2002, Khot introduced the Unique Games Conjecture (UGC) as a way of making

progress on the approximability of 2-CSPs [Kho02]. The UGC is a stronger conjecture than

P 6= NP , because P 6= NP follows immediately from an unconditional proof of the UGC but
2Given a graph G(V, E), partition V into sets S and V − S such that the number of edges crossing the

cut, C(S, V −S), is maximized. This is a boolean satisfiability problem because the constraints are boolean
constraints of the form, (xi ∧¬xj)∨ (¬xi ∧xj) where xi and xj are vertices connected by an edge. It is easy
to check that this constraint is satisfied if and only if xi and xj get different assignments, meaning they are
placed on different sides of the cut.
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the UGC does not follow immediately from P 6= NP . Though Khot’s conjecture remains

open, and little progress has been made in resolving it, it implies a number of attractive

results: hardness results for 2-Linear-Equations and Not-all-equal 3-Sat [Kho02],

an optimal hardness result for VertexCover [KR03], and a tight .879-hardness result

for MaxCut [KKMO04], matching the approximation ratio of the Goemans-Williamson

algorithm. These surprising results are not evidence for or against the Unique Games

Conjecture, but they do make determining the status of the Unique Games Conjecture an

interesting open problem. We also note that work on the Unique Games Conjecture has

led to results which do not require the UGC, including disproving a conjecture about the

embeddability of a certain metric [KV05] and an approximation algorithm for constraint

satisfaction problems [Rag08].

The surprising appearance of Goemans-Williamson’s constant (which we will derive

from a geometric argument in Section 2.2) in the UGC-based MaxCut work suggests a

connection between the Unique Games Conjecture and semidefinite programming. This is

borne out by a series of other papers giving semidefinite programming-based approximation

algorithms (or in many cases, semidefinite programming-based integrality gaps) that match

inapproximability results, assuming the Unique Games Conjecture. As Austrin writes in

the introduction to [Aus07a], there “appears to be a very strong connection between the

power of the semidefinite programming paradigm for designing approximation algorithms,

and the power of UGC-based hardness of approximation results.”

We state a set of conjectures formalizing a connection between semidefinite program-

ming and Unique Games. Under the Unique Games Conjecture our conjectures imply that

for some class of problems, semidefinite programming gives optimal approximability results.

While the status of the Unique Games Conjecture remains unresolved, proving this con-

jecture would explain the broad picture of previous work on Unique Games. It would also

provide intuition about the implications of the Unique Games Conjecture.

After stating our conjectures, we investigate them for a small class of problems. In the

specific case that we investigate, previous work by Austrin [Aus07a] has established tight

UGC-based inapproximability results for Max 2-Sat and two closely related problems

6



which we will formally define later: Balanced Max 2-Sat and ∆-Imbalanced Max

2-Sat. Austrin’s work contains a surprising result under the UGC, which we wish to

investigate further. We provide the first numerical calculations of the inapproximability

of ∆-Imbalanced Max 2-Sat using a formula of Austrin’s. We continue Austrin’s line

of work by proving a tight result for ∆-Imbalanced Max 2-Sat. We do so under a

plausible assumption which we do not prove analytically, similar to the one in Austrin’s

work [Aus07a].

Our work is organized as follows: in Chapter 2 we state the background on approx-

imation algorithms and PCP-based inapproximability results. In Chapter 3 we develop

conjectures relating the power of semidefinite programming and the Unique Games Con-

jecture. In Chapter 4 we restate Austrin’s results for Max 2-Sat and develop our own for

∆-Imbalanced Max 2-Sat. In Chapter 5 we conclude.

7



Chapter 2

Background

In this chapter, we formally define approximation algorithms and semidefinite program-

ming. We describe inapproximability results and the successes of probabilistically checkable

proofs in obtaining these results. We also describe the successes of the use of semidefinite

programming in obtaining approximation algorithms. We state the Unique Games Conjec-

ture (UGC) and summarize some UGC-based inapproximability results. We conclude by

summarizing recent work relating the UGC to semidefinite programming.

2.1 Approximation Algorithms

A polynomial time α-approximation algorithm is a polynomial time algorithm that solves

instances of a combinatorial optimization problem to within a worst-case factor α of the

optimal solution for every instance. As an example, consider an instance of a profit max-

imization problem that has an optimal solution yielding $20 of profit. A 1
2 -approximation

algorithm gives a solution with a guarantee that it will yield at least $10 of profit.

We define an approximation algorithm with approximation ratio α ≤ 1 in the case

of combinatorial maximization problems (a similar definition for α ≥ 1 can be made for

combinatorial minimization problems):

Definition 2.1.1. An approximation algorithm A for a combinatorial maximization prob-

lem achieves an approximation ratio α ≤ 1 (and is called an α-approximation) if given an
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instance I with optimum value OPT , A outputs a solution with value S where S ≥ α ·OPT .

α is called an approximation ratio because it bounds the ratio S
OPT .

We now describe and analyze a prototypical approximation algorithm based on random-

ized rounding1 and linear programming. Our polynomial time algorithm is as follows: first,

express the problem to be solved as an integer linear program. Second, “relax” this pro-

gram so that the variables are no longer restricted to integers. Third, the relaxed program

is a linear program, so solve it optimally in polynomial time. Fourth, use a randomized

polynomial time rounding procedure to make the solution integral, thus arriving at a fea-

sible solution (a solution satisfying the constraints of the original integer linear program).

Output this solution.

Now we want to analyze this algorithm by proving a guarantee on how far the solution

is from optimal. We call the optimum value of the original problem OPT and the optimum

value of the relaxed program OPT ′. We are interested in the value S of the (rounded)

integral solution because this is the output of our approximation algorithm. We want to

find the approximation ratio α by proving a lower bound on S
OPT but we do not usually

know anything about OPT . Instead we observe OPT ′ ≥ OPT (since the relaxation of a

maximization problem has value greater than or equal to the original version), so S
OPT ′ ≤

S
OPT . Thus if we can prove a lower bound on S

OPT ′ this will serve as our approximation

ratio α. This is represented in Figure 2.1.

-�

S OPT OPT ′

Figure 2.1: In analyzing an approximation algorithm for a maximization problem based
on relaxation and rounding, OPT is the value we are trying to approximate, OPT ′ is the
value of the relaxed (and probably infeasible) solution, and S is the value of the rounded
solution. We are interested in the approximation ratio α so we find it as a lower bound
α ≤ S

OPT ′ ≤ S
OPT .

1Most approximation algorithms use randomness and for the purposes of our work, we will assume that
randomness is always allowed.
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2.2 Semidefinite Programming (SDP)

In the previous section we outlined an approximation algorithm based on relaxing an integer

linear program into a linear program, solving optimally, and then rounding. Using the

same idea, we create a more sophisticated approximation algorithm as follows: represent

the problem as an integer quadratic program, relax it to a semidefinite program, solve it

optimally, and then round.

We define a semidefinite program as follows:

max C ·X

subject to: Ai ·X = bi, i = 1, . . . ,m,

X ∈ Sn+ i.e., X is positive semidefinite

C,A1, . . . , Am symmetric matrices

Goemans and Williamson devised the SDP-based approximation algorithm and applied

it to MaxCut, Max 2-Sat, and Max DiCut [GW95]. Their techniques proved very

successful and will be central to our work. We outline the proof of Goemans and Williamson

[GW95] for the case of MaxCut.

Theorem 2.2.1. MaxCut can be approximated to within a constant αGW = .879.

Proof. Given a graph G = (V,E) with |V | = n and edge weights wij = wji ≥ 0, we

would like to find a set S ⊂ V that maximizes the weight of the edges crossing from S to

V − S, which we denote by C(S, V − S). We create variables x1, . . . , xn for the vertices,

with xj = 1 if vertex j is in S and xj = −1 otherwise. Then we can express this problem

as an integer quadratic program:

max
1
2

∑
i<j

wij(1− xixj)

subject to: xj ∈ {−1, 1}, j = 1, . . . , n

Now we relax this program to a semidefinite program, relaxing some of the constraints

10



and allowing the objective function to take values in a larger space. This will guarantee that

the relaxed program has an optimum value at least as large as that of the integer program.

Following Goemans and Williamson, we replace scalar variables xj with vectors vj ∈ Sn.

max
1
2

∑
i<j

wij(1− vi · vj)

subject to: vj ∈ Sn, j = 1, . . . , n

Now, we solve this relaxation with semidefinite programming to obtain a (nearly) opti-

mal set of vectors v1, . . . ,vn. Next, we pick a vector r uniformly at random in Sn. Finally,

we round each vector vj to a scalar xj with value sign(vj · r) ≥ 0. Equivalently, for each

vector vj we place vertex j in S if vj · r ≥ 0.

We analyze this algorithm as follows:

Lemma 2.2.2. For two vectors vi and vj, the probability that the rounding places them on

different sides of the cut is given by: Pr[xi 6= xj ] = arccos(vi·vj)
π .

Proof.

Pr[xi 6= xj ] = Pr[sign(vi · r) 6= sign(vj · r)] (2.1)

= 2 Pr[sign(vi · r) ≥ 0 and sign(vj · r) < 0] (2.2)

We argue geometrically, picturing vi, vj, and r as vectors on an n-dimensional sphere.

We want to calculate Pr[sign(vi · r) ≥ 0 and sign(vj · r) < 0], the probability that vi is

above the random hyperplane normal to r and vj is below this hyperplane.

The sets A = {r : vi · r ≥ 0} and B = {r : vj · r < 0} are half-spheres bounded by planes

{r : vi · r = 0} and {r : vj · r = 0} respectively. Note that B contains vectors pointing in

the direction −vj since these are the ones for which vj · r < 0.

We want to calculate the intersection of A and B. The intersection is directly propor-

tional to the angle between vi and vj, arccos(vi ·vj). To find the constant of proportionality

we notice that if arccos(vi ·vj) = π then vi and vj point in opposite directions, so the prob-
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ability of vi lying above the hyperplane and vj below must be 1
2 . Equivalently, we argue

that in this case A and B are the same half-sphere, so their intersection must be half the

volume of the sphere.

Thus the constant of proportionality must be 1
2π and in general the formula is:

1
2π

arccos(vi · vj)

We calculate twice this probability to account for the other, equivalent case with vi

below the hyperplane and vj above as in Equation 2.2 and arrive at what we wanted:

arccos(vi · vj)
π

Now we want to prove a guarantee on the ratio between the expected performance of

this rounding algorithm, E[C(S, V −S)] and the value of the relaxed program, OPT ′. As in

the algorithm sketched in Section 2.1 for linear programming, this ratio will give us a bound

on the approximation ratio, the ratio between the performance of this rounding algorithm

and the optimum value OPT of the original instance of MaxCut.

Lemma 2.2.3. E[C(S, V − S)] ≥ .879 OPT ′
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Proof.

E[C(S, V − S)] = E[
1
2

∑
i<j

wij(1− xixj)] (2.3)

=
∑
i<j

wij Pr[xi 6= xj ] (2.4)

=
∑
i<j

wij
arccos(vi · vj)

π
(2.5)

=
1
2

∑
i<j

wij(1− vi · vj)
2
π

arccos(vi · vj)
(1− vi · vj)

(2.6)

≥ 1
2

∑
i<j

wij(1− vi · vj)
2
π

min
−1≤t<1

arccos(t)
(1− t)

(2.7)

=

1
2

∑
i<j

wij(1− vi · vj)

 2
π

min
0<θ≤π

θ

1− cos(θ)
(2.8)

= OPT ′ · 2
π

min
0<θ≤π

θ

1− cos(θ)
(2.9)

≥ OPT ′ · .879 (2.10)

The minimization at the end follows from a straightforward application of calculus.

Thus we have demonstrated Goemans and Williamson’s .879-approximation for MaxCut.

2.3 Inapproximability Results

A natural question to ask in the area of approximation algorithms is: what are lower and

upper bounds on the approximation ratios we can achieve? For example, it is easy to show

the following:

• MaxCut is NP-complete, so efficiently finding the optimal solution is intractable

unless P = NP

• There is a simple approximation algorithm with approximation ratio 2 for MaxCut
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This is by no means the end of the story. With a 2-approximation for MaxCut but

no exact polynomial time algorithm, the natural question to ask is: can we do better? We

would like an algorithmic result, that is, an approximation algorithm with a ratio smaller

than 2; we might even hope for a polynomial time approximation scheme which would give

a (1 + ε)-approximation algorithm for any ε > 0.

Inapproximability results tell us how much better we could possibly hope to do. They

are hardness results because they take the following form: it is NP-hard to approximate a

problem to within a factor α. Though a small number of inapproximability results can be

proved with elementary techniques, it was not until the advent of the PCP theory in the

1990’s that many more inapproximability results could be proved.

2.4 Probabilistically Checkable Proofs (PCP)

Probabilistically checkable proofs are at the heart of the PCP theory, which implies a number

of important inapproximability results. Ryan O’Donnell gives a nice tour of the history of

the PCP theory in [O’D05] and Sanjeev Arora gives a survey in [Aro02]. Though we will

not delve very deeply into the PCP theory in this work, we make the following definition

and state the central theorem of the PCP theory so as to motivate our description of the

Unique Games Conjecture in the next section [KR03]:

Definition 2.4.1. An instance Φ = (X,Y,R,Ψ,W ) of Label Cover is a set of left

vertices X and a set of right vertices Y , together with a set of possible labels R. For each

x ∈ X, y ∈ Y , Ψ contains a constraint ψxy ⊆ R×R, with weight wxy ∈W ≥ 0. A labeling

is a function L that maps X ∪ Y to R. If (L(x), L(y)) ∈ ψxy we say that L satisfies the

constraint ψxy. For short-hand, we will refer to the sum of the weights of the constraints

satisfied by a certain labeling as the weight of a labeling. The sum of the weights of all of

the constraints is always 1.

We show an example of an instance of Label Cover in Figure 2.2.

A central theorem for hardness results which follows from the PCP theorems [AS98,

ALM+98], and the parallel repetition theorem of [Raz98] shows that Label Cover is hard
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{(3,1),(3,3),
(1,2)}

{(1,1),(1,2)}

{(1,1),(2,2)}

{(2,2)}

Figure 2.2: This figure shows an instance of Label Cover. The objective is to assign a
label to each vertex so that all of the constraints are satisfied. Each edge is shown with a
constraint ψ, i.e., the vertices in the edge with constraint {(1, 1), (2, 2)} must be labeled
1 and 1 or 2 and 2 in order to satisfy this constraint. It is easy to check that there is a
labeling which satisfies all of the constraints, so the weight of this labeling is 1.

(see also [KR03]):

Theorem 2.4.2. For any γ > 0 there exists a suitably large set R such that it is NP-hard

to distinguish between an instance of Label Cover for which there exists a labeling with

weight 1 and an instance of Label Cover for which every labeling has weight ≤ γ.

2.5 The Unique Games Conjecture (UGC)

In place of the Label Cover problem described in the previous section, Khot conjectured

in [Kho02] that Unique Label Cover is NP-hard. (Even in Khot’s original paper, he

found it more convenient to talk about Unique Label Cover instead of Unique Games,

to which it is equivalent and the source of the name of his conjecture.)

Definition 2.5.1. An instance Φ = (X,Y,R,Ψ,W ) of Unique Label Cover is an in-

stance of Label Cover in which for each constraint ψxy ∈ Ψ and each label r1 ∈ R there

exists exactly one label r2 ∈ R such that (r1, r2) ∈ ψxy and for each label r2 ∈ R there exists

exactly one label r1 ∈ R such that (r1, r2) ∈ ψxy.

We show an example of an instance of Unique Label Cover in Figure 2.3.
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{(1,2),(3,2)}

{(1,3),(2,3)}

{(1,1),(2,2)}

{(1,1)}

Figure 2.3: This figure shows an instance of Unique Label Cover. The objective is to
assign a label to each vertex, so as to maximize the weight of the satisfied constraints. Each
edge is shown with a constraint ψ. Unlike in the instance of Label Cover in Figure 2.2,
each ψ is a bijection. It is easy to check that no labeling can satisfy more than half of the
constraints.

Given an instance of Unique Label Cover a trivial algorithm can determine if all

of constraints are satisfiable (unlike in the case of Label Cover), so Khot makes the

following conjecture (cf., Theorem 2.4.2):

Conjecture 2.5.2 (first conjectured in [Kho02]). It is NP-hard to distinguish between an

instance of Unique Label Cover in which there exists a labeling L with weight at least

1−ζ and an instance of Unique Label Cover in which every labeling has weight at most

γ.

2.6 SDP-based Integrality Gaps

Despite the great successes of the PCP theory, there are still a fair number of problems for

which no inapproximability results are known. Short of an unconditional inapproximability

result, one way to make modest progress is to rule out the possibility of achieving better

approximations using a certain approximation technique. Since semidefinite programming

is one of the most successful approximation techniques, proving that a better approximation

algorithm must use techniques other than semidefinite programming is a useful result, even

if it does not imply that progress is impossible (assuming P 6= NP ). We formalize this idea
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through the concept of integrality gaps.

Definition 2.6.1. Given a combinatorial maximization problem, with an integer program

with optimum value OPT and a relaxed SDP with optimum value OPT ′, the integrality gap

α is the worst-case ratio OPT
OPT ′ , i.e.:

α = min
instances of the problem

OPT

OPT ′

Intuitively, the integrality gap is the gap between the integral solution to the original

problem and the solution to the SDP. An integrality gap α implies that if we were to

create an approximation algorithm based on this SDP, it would not be able to achieve an

approximation ratio better than α. We can demonstrate a bound on the integrality gap for

a certain problem by carefully constructing an instance and showing the value of its optimal

and relaxed solutions.

2.7 UGC-based Inapproximability Results

Khot’s Unique Games Conjecture is useful because we can use Unique Label Cover in

the place of Label Cover in the construction of PCP-based inapproximability proofs.

This is especially useful in cases of satisfiability on two variables. As mentioned in the

introduction, Khot proved UGC-hardness results for 2-Linear-Equations and Not-all-

equal 3-Sat in [Kho02]. Khot and Regev proved results for VertexCover in [KR03].

A series of papers [KO06, KKMO04, OW07] all contain results for MaxCut based on the

UGC. Chawla et al. proved results for Multicut and Sparsest-Cut in [CKK+05]. And finally,

Austrin proved results we will consider closely for Max 2-Sat in [Aus07a] and any 2-CSP

in [Aus07b].
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2.8 Relating UGC-based Inapproximability and Semidefinite

Programming

As we described in the previous section, the Unique Games Conjecture has been used in a

number of interesting papers. In many of these, the authors use SDP-based approximation

algorithms and integrality gaps in various ways. In a few of these papers, the authors

use inapproximability results to produce SDP-based integrality gaps. In [KV05], Khot and

Vishnoi construct a semidefinite program for Unique Games and show that it has an

integrality gap such that for parameters N and η, the SDP solution has weight at least

1− η while the actual weight of the best labeling is ≤ 1
Nη . Then, by applying known PCP-

based reductions for various cut problems (including Sparsest Cut, Minimum Uncut,

and MaxCut) to this program, they create semidefinite programs for these problems. They

can use this reduction to prove integrality gaps for these semidefinite programs.

Conceptually, for these cut problems the UGC implies that an SDP-based approximation

algorithm cannot achieve an approximation ratio better than the one given by the UG-

hardness result, even if the SDP is strengthened in various ways, including adding triangle

inequalities or using the Lovász-Schrijver method [LS91]. Furthermore, because the SDPs

that Khot and Vishnoi use include the triangle inequalities, these inequalities do not add

any power to the SDP for MaxCut.

Working in the other direction, Khot and O’Donnell give an SDP-based integrality gap

for MaxCut and translate it directly into a Long Code test2 [KO06]. This Long Code test

is then used in a Unique Label Cover reduction following [KKMO04], thus proving a

UG-hardness result for MaxCut. This shows that an integrality gap is sometimes as good

as a hardness result, at least assuming the UGC.

Some of these papers directly connect semidefinite programming and the UGC. Austrin

shows that Lewin, Livnat and Zwick’s SDP-based approximation algorithm for Max 2-

Sat [LLZ02] is optimal under the Unique Games Conjecture [Aus07a]. We will build on

this work, which is discussed at length in Chapter 4. In [Aus07b] Austrin proves sharp
2A discussion of Long Codes, a key component of the PCP theory, are beyond the scope of this work.

See Arora’s survey [Aro02].
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approximability results under the Unique Games Conjecture for any boolean 2-CSP. In

[Rag08], Raghavendra makes precise a version of the conjecture we state in the next chapter

(independently of our work), showing that under the UGC, for every constraint satisfaction

problem an SDP-based approximation algorithm is optimal. See Section 3.2 for a full

discussion. In the next chapter, we place these results in the framework of a conjecture we

state relating semidefinite programming to the Unique Games Conjecture.
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Chapter 3

Our Conjectures

In this chapter, we state formal conjectures connecting semidefinite programming and the

Unique Games Conjecture, show that one of our conjectures is trivially true, and categorize

the research described in the previous chapter in the framework of our conjectures.

As the results at the end of the previous chapter suggest, there is already a connection

between semidefinite programming and the Unique Games Conjecture: for the problems we

cited, the Unique Games Conjecture implies that semidefinite programming-based approx-

imation algorithms are optimal. The project we propose in this thesis (but do not come

close to solving) is to discover a class of problems, P, for which this relationship between

SDP-based approximation algorithms and the UGC holds.

To be precise, we state the following conjecture:

Conjecture 3.0.1. For a problem Π in P, there exists an SDP for Π and a rounding

algorithm for this SDP which gives an optimal approximation ratio, assuming the Unique

Games Conjecture.

A natural candidate for P, inspired by previous work, is constraint satisfaction problems

with constraints limited to acting on 2 variables (2-CSPs). As we will see, this is not

ambitious enough.

Based again on previous work, we make two related conjectures which specify a possible

connection between semidefinite programming and the Unique Games Conjecture. Where
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our first conjecture only posits a tight algorithmic result based on rounding a semidefinite

program, much of the previous work in this area used or created integrality gaps for semidef-

inite programs. Thus we conjecture that the existence of SDP-based integrality gaps for

these problems is equivalent to the existence of inapproximability results under the Unique

Games Conjecture. There is a direct connection between SDP-based integrality gaps and

approximation algorithms: integrality gaps serve as upper bounds for approximation ratios,

and the existence of an approximation ratio α implies the existence of an integrality gap

which is at least as bad as α.

Before we make these conjectures, we note that they will only make sense for a class P of

optimization problems for which there is a “natural” semidefinite programming relaxation.

As an example, we propose a natural semidefinite program for Max CSP based on Karloff

and Zwick’s program in [KZ97]:

Definition 3.0.2. A standard semidefinite relaxation of an instance I of Max CSP is a

semidefinite program with the following properties:

1. For each variable xi of I there is a unit vector vi. There is also a unit vector v0 for

false.

2. For each constraint of I there is a scalar za which represents whether or not it is

satisfied.

3. The objective is maxz1,...zm
∑m

a=1waza where the wa are the weights of the m con-

straints.

4. Every constraint of I corresponds to a set of linear (in)equalities with inner products

of the form vi ·vj, designed so as to capture the constraint. For example, a constraint

in 2-Sat is a clause (xi ∨ xj) which corresponds to zj = 1− vi · vj.

We now formally state these connections:

Conjecture 3.0.3. For any optimization problem Π ∈ P which is UG-hard to approximate

to within some factor α, there is a natural SDP relaxation for Π which achieves an integrality

gap of α.
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Conjecture 3.0.4. For every problem Π ∈ P with a natural SDP relaxation achieving an

integrality gap of α, Π is UG-hard to approximate to within a factor of α.

These two conjectures imply a deep connection between the UGC and SDP for the

problems in P. Conjecture 3.0.3 implies that a problem in P that is UG-hard to approximate

within α cannot have an SDP-based rounding algorithm which does better than α because

there is an SDP-based integrality gap of α for the problem. (This statement is trivially

true, as we will show.) Conversely, Conjecture 3.0.4 implies that under the UGC, if we

demonstrate an SDP-based integrality gap of α for a problem, it is equivalent to proving

that the problem is NP-hard to approximate within α.

3.1 Preliminary Results

We can prove a non-constructive version of Conjecture 3.0.3 by contradiction under the

Unique Games Conjecture. Given a problem which is UG-hard to approximate to within a

factor α, we assume for the sake of contradiction that an SDP-based integrality gap of α

does not exist. This means that there is no SDP for which the gap is ever worse than α

(i.e., ≥ α). This is equivalent to saying that in every SDP we always achieve a gap better

than α. Thus we can choose to round an SDP of our choice in an arbitrary way, because

we are assured that the integrality gap is always ≤ α. This means we have an SDP-based

rounding algorithm for this problem which does better than α, contradicting the existence

of the UGC-based α-inapproximability result. This proves the theorem.

Despite having this proof, Conjecture 3.0.3 is still interesting if we ask for a constructive

proof, in the style of [KV05] which uses the Long Code test for the UG-hardness proof in

the construction of an SDP for Π with an integrality gap equal to α.

3.2 Previous Work in the Framework of Our Conjectures

Table 3.1 summarizes the results of the papers described in Section 2.8 in the framework

of our conjectures by listing the conjecture which the paper supports. To be precise, if we

restrict P to the problem or problems considered in the paper, than the conjecture is true.
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Paper Problems considered Conjecture
[Aus07a] Max 2-Sat and imbalanced Max 2-Sat 3.0.1
[Aus07b] Max 2-CSP 3.0.1
[KV05] Sparsest Cut, MinUncut, MaxCut 3.0.3
[KO06] MaxCut, computing || · ||∞→1 norm of a matrix 3.0.4
[OW07] MaxCut 3.0.4

Table 3.1: Previous work in the framework of our conjectures

The most conclusive work on this conjecture is in very recent independent work by

Raghavendra [Rag08]. Raghavendra proves Conjecture 3.0.1 for all constraint satisfaction

problems. In proving this theorem, he proves Conjecture 3.0.4 for CSPs, demonstrating a

conversion from SDP-based integrality gaps to UG-hardness results. Interestingly, he relies

on this connection to obtain his approximation algorithm for Conjecture 3.0.1.

More work is needed to see if Raghavendra’s techniques can be extended. Perhaps

the Unique Games Conjecture implies tight algorithmic results for problems that are not

CSPs, and thus Conjecture 3.0.1 holds for a larger class of problems than just CSPs.

Raghavendra’s work may also have implications for proving a constructive version of 3.0.3.

As a first step in an investigation of this conjecture, we will attempt to extend Aus-

trin’s work to a class of imbalanced Max 2-Sat problems parameterized by a measure of

imbalance ∆, which we will define in the next chapter.
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Chapter 4

Results for Max 2-Sat and

∆-Imbalanced Max 2-Sat

In this chapter, we motivate our work on Max 2-Sat, define the 2-Sat, Max 2-Sat,

Balanced Max 2-Sat, and ∆-Imbalanced Max 2-Sat problems, restate Austrin’s

proof of an approximability result for Max 2-Sat which is based on the algorithm of

Lewin, Livnat and Zwick [LLZ02], state our proof of an approximability result for ∆-

Imbalanced Max 2-Sat, and present our calculations of inapproximability results for

∆-Imbalanced Max 2-Sat based on Austrin’s results [Aus07a]. Together these results

show that the approximation algorithm of Lewin, Livnat and Zwick [LLZ02] is optimal for

∆-Imbalanced Max 2-Sat, for all values of ∆, under a certain assumption Austrin makes

which we will establish numerically for various values of ∆.

Khot et al. sought tight inapproximability results for MaxCut and other 2-CSPs in-

cluding Max 2-Sat [KKMO04]. They succeeded under the UGC by showing that MaxCut

is UG-hard to approximate to within α ≈ .879, the same approximation ratio which Goe-

mans and Williamson’s algorithm achieved [GW95]. Applying the same techniques to Max

2-Sat, they proved that it is UG-hard to approximate Max 2-Sat up to a factor of .9439.

This left a small gap in the approximability of Max 2-Sat because Lewin, Livnat and

Zwick’s algorithm achieves an approximation ratio of .9401. Khot et al. observed that their
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hardness result only relies on instances of Max 2-Sat which are strictly “balanced.” We

formalize these definitions before proceeding. We define the 2-Sat decision problem as

follows:

Definition 4.0.1. An instance I of 2-Sat on a set of n variables consists of a set of

clauses, with each clause E ∈ I a disjunction of the form `1 ∨ `2 where each `i is a literal,

i.e., either a variable or its negation. The decision problem is to decide whether or not there

is an assignment of true and false to the n variables that satisfies all of the clauses.

We define the Max 2-Sat combinatorial optimization similarly:

Definition 4.0.2. An instance I of (weighted) Max 2-Sat is an instance of 2-Sat in

which each clause E has a nonnegative weight wE . The objective is to find an assignment of

true and false to the n variables that maximizes the sum of the weights of the satisfied

clauses.

We note that by [CST01], weighted and unweighted instances of Max 2-Sat are equally

hard to approximate. This means that there is an approximation preserving reduction from

weighted instances of Max 2-Sat to unweighted instances, so any hardness result which

holds for weighted instances must also hold for unweighted instances.

Khot et al. defined Balanced Max 2-Sat as follows:

Definition 4.0.3. An instance of Balanced Max 2-Sat is an instance of Max 2-Sat

for which each variable appears positively and negatively with equal total weight.

For these balanced instances, Khot et al. demonstrated a simple approximation algo-

rithm based on Goemans and Williamson’s original algorithm which achieves an approxima-

tion ratio of .9439. Reasoning about these balanced cases, Khot et al. write [KKMO04, p.

21]:

We contend that the balanced versions of 2-bit CSPs ought to be equally hard
as their general versions; the intuition is that if more constraints are expected
to be satisfied if xi is set to, say, 1 rather than −1, it is a “free hint” that the
xi should be set to TRUE.
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Khot et al. actually define balanced 2-CSPs more generally, and show that an instance

is balanced if the expected number of satisfied constraints when xi = true and the other

variables are assigned uniformly at random is equal to the expected number of satisfied

constraints when xi = false and the other variables are assigned uniformly at random.

Thus, their conjecture is equivalent to the claim that instances of Balanced Max 2-Sat,

in which no variable is more likely to be set to true than any other, are at least as hard

to approximate as instances in which the variables are not so strictly balanced.

Surprisingly, Austrin disproves this conjecture, assuming the Unique Games Conjecture

[Aus07a]. Austrin proves that there are “imbalanced” instances of Max 2-Sat, even for

a very restricted notion of imbalance, which are harder to approximate than instances of

Balanced Max 2-Sat.

The terminology ∆-Imbalanced Max 2-Sat is our own. Austrin refers to instances

of Max 2-Sat with ∆-mixed clauses [Aus07a]:

Definition 4.0.4. Given variables xi, xj, weight wij ≥ 0, and imbalance parameter

−1 ≤ ∆ ≤ 1 define a ∆-mixed clause as a pair of clauses:

1. (xi ∨ xj) with weight wij · 1+∆
2

2. (¬xi ∨ ¬xj) with weight wij · 1−∆
2

Definition 4.0.5. An instance of ∆-Imbalanced Max 2-Sat is an instance of Max

2-Sat with variables x1, . . . , xn consisting only of ∆-mixed clauses for all pairs of variables

xi, xj. Note that wij = 0 is allowed. Also note that clauses of the form (xi ∨ ¬xj) are not

allowed.

The cases of ∆-Imbalanced Max 2-Sat in which ∆ = 1 and ∆ = −1 can be solved

optimally in polynomial time because variables only occur positively or negatively so there

is a trivial solution that works. We observe that although the case of ∆-Imbalanced

Max 2-Sat with ∆ = 0 satisfies the requirements of Balanced Max 2-Sat, instances

of Balanced Max 2-Sat are not necessarily instances of ∆-Imbalanced Max 2-Sat

because they may not be restricted to ∆-mixed clauses.

Using this notation, Austrin proves the following:
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Theorem 4.0.6 (Equation (43) in [Aus07a]). Assuming the UGC it is NP-hard to approx-

imate ∆-Imbalanced Max 2-Sat to within a factor:

min
ξ∈[−1,1]

max
µ∈[−1,1]

2− (1 + ∆)µ− 2Γρ̃(µ)
2−∆ξ − |ξ|

+O(ε) (4.1)

where ρ̃ = |ξ|−1
|ξ|+1

Austrin minimizes this formula to find the hardest instances of ∆-Imbalanced Max

2-Sat. For ∆ = .367, which corresponds to instances of Max 2-Sat with an imbalance

of 68%, this formula says that it is UG-hard to approximate these instances to within a

factor of .9401, matching the approximation ratio of Lewin, Livnat and Zwick for general

instances of Max 2-Sat.

We graph known results for the approximability and inapproximability of ∆-Imbalanced

Max 2-Sat in Figure 4.1. As the graph shows, there are gaps in our knowledge. Austrin’s

formula for inapproximability holds for all values of ∆, but Austrin did not calculate hard-

ness results for values of ∆ other than .367 and −.367. We will calculate these values and

fill in this part of the graph in Figure 4.7. Furthermore, Austrin did not investigate the

tightness of his inapproximability results for other values of ∆. We will fill in the approx-

imability curve in the graph based on our proof of the approximability of ∆-Imbalanced

Max 2-Sat for all values of ∆. A priori, it is conceivable that our algorithmic results will

not match the hardness results which Austrin already found and we will be left with two

curves and a gap.

In Section 4.2.1 we will prove that a modification of Lewin, Livnat, and Zwick’s algo-

rithm for Max 2-Sat works for ∆-Imbalanced Max 2-Sat. Analyzing this algorithm

under certain plausible assumptions, we obtain a formula for the approximation ratio of

∆-Imbalanced Max 2-Sat which exactly matches the formula given by Austrin for the

inapproximability of ∆-Imbalanced Max 2-Sat under the Unique Games Conjecture:
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Previous Results for Max 2-Sat
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Figure 4.1: This graph shows known approximability (algorithmic) and inapproximability
(hardness) results for ∆-Imbalanced Max 2-Sat. See Table 4.1 for the sources of these
results. It should also be noted that the result in Lewin, Livnat and Zwick [LLZ02] gives a
.9401-approximation for Max 2-Sat which means it is a lower-bound for all values of ∆,
so this graph should contain a line for approximability along the bottom. This graph shows
Austrin’s interesting and surprising result: Balanced Max 2-Sat is easier to approximate
than Max 2-Sat. Our project is to fill in the rest of the graph for other values of ∆.

Theorem 4.0.7. There is an SDP-based rounding algorithm for ∆-Imbalanced Max

2-Sat with approximation ratio given by:

max
β∈[0,1]

min
ξ∈[−1,1]

2− (1 + ∆)β · ξ − 2Γρ̃(βξ)
2−∆ξ − |ξ|

where ρ̃ = |ξ|−1
|ξ|+1

Because the formulas in Theorems 4.0.6 and 4.0.7 are equivalent, we will have success-

fully filled in the graph in Figure 4.7 with one tight curve. Note that if the UGC is false than

these inapproximability results do not necessarily hold and a new approximation algorithm
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could be devised which achieves a better approximation ratio for imbalanced instances. So

Khot et al.’s conjecture might still hold, but not under the UGC. We summarize the previ-

ous results for approximability and inapproximability and the results we will prove in Table

4.1.

Paper Type of result Approximation ratio
[LLZ02] Approximability for Max 2-Sat .9401

[KKMO04] Inapproximability for Balanced Max 2-Sat .9439
[KKMO04] Approximability for Balanced Max 2-Sat .9439
[Aus07a] Inapproximability for ∆-Imbalanced Max 2-Sat Theorem 4.0.6
[Aus07a] Inapproximability for Max 2-Sat .9401

This work Approximability for ∆-Imbalanced Max 2-Sat Theorem 4.0.7 (matches 4.0.6)

Table 4.1: Previous results for different cases of Max 2-Sat. Hardness results assume the
Unique Games Conjecture.

4.1 Approximating Max 2-Sat

In this section we state and prove Austrin’s algorithmic results for approximating Max

2-Sat [Aus07a]. We start with some definitions which we will need.

4.1.1 Preliminaries

Definition 4.1.1. The standard normal density function φ(x) is given by:

φ(x) =
1√
2π
e−x

2/2 (4.2)

Definition 4.1.2. For X a normally distributed random variable, the standard normal

distribution function Φ(x) is given by:

Φ(x) = Pr[X < x] =
∫ x

−∞
φ(t)dt =

1√
2π

∫ x

−∞
e−t

2/2dt (4.3)

For X and Y normally distributed random variables with correlation ρ, the bivariate

normal distribution of X and Y at a point (x, y) is Pr[X ≤ x and Y ≤ y].
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Definition 4.1.3. We define a function Γρ as the bivariate normal distribution with the

following transformation on its input:

Γρ(µ1, µ2) = Pr[X ≤ t1 and Y ≤ t2] (4.4)

where t1 = Φ−1(1−µ1

2 ) and t2 = Φ−1(1−µ2

2 ).

Finally, we state a useful lemma. The proof can be found in Appendix D of [Aus07a].

Lemma 4.1.4. For all ρ, µ1, µ2 ∈ [−1, 1] the following holds:

Γρ(−µ1,−µ2) = Γρ(µ1, µ2) +
µ1

2
+
µ2

2
(4.5)

4.1.2 The Quadratic Program and Semidefinite Program for Max 2-Sat

Following [Aus07a], we present and analyze Lewin, Livnat, and Zwick’s THRESH¯ family

of rounding algorithms for Max 2-Sat [LLZ02]. In Section 4.2, we modify this algorithm

for ∆-Imbalanced Max 2-Sat.

Lewin, Livnat and Zwick analyze the performance of a few different families of rounding

algorithms applied to the same standard semidefinite program for Max 2-Sat. They call

their best family of rounding algorithms THRESH¯ because it is a subset of the family of

algorithms called THRESH, i.e., threshold. The reason for this name is that the rounding

is based on whether a certain value is above or below a certain threshold.

We present the standard quadratic program for Max 2-Sat in Figure 4.2. We create

variables x1, . . . , xn which take the value −1 for true and 1 for false. Following [LLZ02]

we set xn+i = ¬xi, the so-called consistency requirement. Thus, the entire set of clauses is

xi ∨ xj for 1 ≤ i, j ≤ 2n. We call the weight of a clause wij . The arithmetization in 4.2 can

be checked easily.

In Figure 4.3 we relax the quadratic program to create a semidefinite program for Max

2-Sat. The variables xi are relaxed into unit vectors vi for 1 ≤ i ≤ 2n. We create a fixed

vector v0 = (1, 0, . . . , 0) which corresponds to false. The requirement that xn+i = ¬xi

now becomes vi · vn+1 = −1. Following [FG95] we have strengthened the program by
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max
1
4

∑
i,j

wij(3− xi − xj − xixj)

xn+i = ¬xi for 1 ≤ i ≤ n
xi ∈ {−1, 1}

Figure 4.2: The quadratic program for Max 2-Sat

adding the triangle constraints (note that there are only four because although there are

eight combinations of signs for v0, vi, and vj, pairing them as in the triangle inequalities

cuts the possibilities down to four.)

max
1
4

∑
i,j

wij(3− v0 · vi − v0 · vj − vi · vj)

vi · vn+i = −1 for 1 ≤ i ≤ n
vi ∈ Rn+1 for 1 ≤ i ≤ 2n
vi · vi = 1 for 1 ≤ i ≤ 2n

v0 = (1, 0, . . . , 0)
The triangle inequalities, for 1 ≤ i ≤ 2n :
v0 · vi + v0 · vj + vi · vj ≥ −1
−v0 · vi + v0 · vj − vi · vj ≥ −1

v0 · vi − v0 · vj − vi · vj ≥ −1
−v0 · vi − v0 · vj + vi · vj ≥ −1

Figure 4.3: The semidefinite program for Max 2-Sat

4.1.3 Rounding the Semidefinite Program

Following Austrin (and the prevailing practice) we note that while it is possible to find the

optimum of a semidefinite program to within an arbitrarily small additive term, it is not

known how to efficiently find the exact optimum. To make the notation simpler, we do not

include this term in what follows, speaking instead of finding the optimal solution to the

SDP.
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Given an optimal solution (v0, . . . ,vn) we want to round these vectors so that we can

assign boolean values to the (x0, . . . , xn).

For each vector vi, we calculate the scalar projection of vi onto v0 for all i:

ξi = v0 · vi (4.6)

Now we calculate the component of vi orthogonal to v0 as vi − ξiv0.

Normalizing, we call this vector ṽi, the unit vector in the direction of the component of

vi orthogonal to v0:

ṽi =
vi − ξiv0√

1− ξ2
i

(4.7)

In Figure 4.4, we show the rounding algorithm THRESH :̄

Step 1: Choose a standard normal random vector r in the n-dimensional
subspace of Rn+1 orthogonal to v0.

Step 2: For each vector vi, round it as follows, where T : [−1, 1]→ R:

xi =
{

true if ṽi · r ≤ T (ξi)
false if ṽi · r > T (ξi)

Figure 4.4: Lewin Livnat and Zwick’s THRESH¯ family of rounding algorithms

Though there are certainly more complicated choices, [LLZ02] found a very simple func-

tion for T which performs well. Following Austrin’s notation, we use:

T (x) = Φ−1

(
1− a(x)

2

)
(4.8)

See the Preliminaries section (4.1.1) for the definition of Φ.

Since vi = −vn+i we have that ξi = −ξn+i, so to satisfy the consistency requirement,

T (−x) = −T (x) i.e., a(x) must be an odd function.
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4.1.4 Analysis of THRESH¯

To find the approximation ratio α of this rounding algorithm we follow [GW95] in looking at

a single clause (xi ∨ xj). For a single clause, the expected contribution to the integer linear

program objective function (where the expectation is over the randomness in the rounding

algorithm) is:
1
4
wij E[3− xi − xj − xixj ] (4.9)

For this same clause, the contribution to the SDP objective function is:

1
4
wij(3− v0 · vi − v0 · vj − vi · vj) (4.10)

We are looking for a lower bound on α so we minimize the ratio of Equations 4.9 and

4.10 over all feasible vector solutions to the SDP:

min
v∈(Sn)n+1 and

v is a feasible solution to the SDP

E[3− xi − xj − xixj ]
3− v0 · vi − v0 · vj − vi · vj

(4.11)

Note that in calculating the approximation ratio we have used the standard trick in

analyzing approximation algorithms based on rounding: because the value of the relaxed

solution is at least as good as the value of the optimal solution, the real approximation

ratio (i.e., the ratio between the value of the approximation algorithm and the value of the

optimal solution) is at least as good as the ratio we are calculating, between the value of

the approximation algorithm and the value of the relaxed solution. This mode of analysis

was described in Section 2.1 and illustrated in Figure 2.1.

To calculate Equation 4.11 we use the linearity of expectations. We will first analyze

the linear terms and then the quadratic terms. First, we prove two lemmas which will aid

our calculations:

Lemma 4.1.5. ṽi · r is a standard N(0, 1) random variable

Proof. r was chosen as a standard normal random vector in the n-dimensional subspace

of Rn+1 orthogonal to v0, the same subspace that contains ṽi. Thus ṽi · r is a linear
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combination of n standard N(0, 1) random variables, which is a standard N(0, 1) random

variable [Fel71, p. 87].

Lemma 4.1.6. xi is set to true with probability 1−a(ξi)
2

Proof.

Pr [xi = true] = Pr
[
ṽi · r ≤ Φ−1

(
1− a(ξi)

2

)]
(4.12)

= Pr
[
Φ(ṽi · r) ≤ 1− a(ξi)

2

]
(4.13)

=
1− a(ξi)

2
(4.14)

Equation 4.14 follows from Lemma 4.1.5.

Applying Lemma 4.1.6, a simple calculation shows that for all i: E[xi] = a(ξi).

We now turn to the quadratic terms. Let ρ = vi · vj. We calculate the covariance of

ṽi · r and ṽj · r:

Cov(ṽi · r, ṽj · r) = E [(ṽi · r− E[ṽi · r]) (ṽj · r− E[ṽj · r])] (4.15)

= E[(ṽi · r)(ṽj · r)] (4.16)

= E

[∑
p

ṽiprp
∑
q

ṽjqrq

]
(4.17)

=
∑
p,q

(ṽipṽjq E [rprq]) (4.18)

=
∑
p

ṽipṽjp (4.19)

= ṽi · ṽj (4.20)

Equation 4.19 holds because each component of r is an independent standard N(0, 1)

random variable, so E[rprq] = 0 for p 6= q and 1 for p = q.
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Let ρ̃ = ṽi · ṽj. We calculate:

ρ̃ = ṽi · ṽj =
ρ− ξiv0√

1− ξ2
i

ρ− ξjv0√
1− ξ2

j

(4.21)

=
ρ− ξiξj√

(1− ξ2
i )(1− ξ2

j )
(4.22)

We want to know the probability that both xi and xj are set to true:

Pr[ṽi · r ≤ T (ξi) and ṽj · r ≤ T (ξj)] = Γρ̃(a(ξi), a(ξj)) (4.23)

The Γρ function was defined in the Preliminaries section (4.1.1).

By the consistency requirement, the probability that both xi and xj are set to false

must be:

Γρ̃(a(−ξi), a(−ξj)) (4.24)

Finally, we calculate:

E[xixj ] = Pr[xi = xj ]− (1− Pr[xi = xj ]) (4.25)

= 2 Pr[xi = xj ]− 1 (4.26)

= 2
[
Γρ̃(a(ξi), a(ξj)) + Γρ̃(a(−ξi), a(−ξj))

]
− 1 (4.27)

= 2
[
2Γρ̃(a(ξi), a(ξj)) +

a(ξi)
2

+
a(ξj)

2

]
− 1 (4.28)

= 4Γρ̃(a(ξi), a(ξj)) + a(ξi) + a(ξj)− 1 (4.29)

Equation 4.28 follows from Proposition 4.1.4 in the Preliminaries section (4.1.1).
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Putting all of these calculations together we find:

E[3− xi − xj − xixj ] (4.30)

= 3− a(ξi)− a(ξj)− (4Γρ̃(a(ξi), a(ξj)) + a(ξi) + a(ξj)− 1) (4.31)

= 4− 2a(ξi)− 2a(ξj)− 4Γρ̃(a(ξi), a(ξj)) (4.32)

Thus:

min
v∈(Sn)n+1 and

v is a feasible solution to the SDP

E[3− xi − xj − xixj ]
3− v0 · vi − v0 · vj − vi · vj

(4.33)

= min
(ξi,ξj ,ρ) satisfy triangle constraints

4− 2a(ξi)− 2a(ξj)− 4Γρ̃(a(ξi), a(ξj))
3− ξi − ξj − ρ

(4.34)

4.1.5 Conclusion

Following [Aus07a] we let a(x) = β · x so that this becomes:

min
(ξi,ξj ,ρ) satisfy triangle constraints

4− 2β(ξi + ξj)− 4Γρ̃(βξi, βξj)
3− ξi − ξj − ρ

(4.35)

According to Lewin, Livnat and Zwick the minima for the above expression, which

are the worst-case configurations (ξi, ξj , ρ), all take the form of the “simple” configuration:

(ξ, ξ,−1+2|ξ|) [LLZ02]. Lewin, Livnat and Zwick do not give an analytic proof of this fact,

instead providing convincing numeric evidence. We will need to make this same assumption,

that worst-case configurations have a simple form, when we extend Austrin’s work in the

next section.

Under this assumption, to find the approximation ratio α we minimize over a single

parameter ξ and maximize over the parameter of the threshold function, β. Recalculating

we find ρ̃ = ρ−ξiξj√
(1−ξ2i )(1−ξ2j )

= |ξ|−1
|ξ|+1 :

α = max
β∈[0,1]

min
ξ∈[−1,1]

4− 4βξ − 4Γρ̃(βξ, βξ)
3− 2ξ − (−1 + 2|ξ|)

= max
β∈[0,1]

min
ξ∈[−1,1]

2− 2βξ − 2Γρ̃(βξ, βξ)
2− ξ − |ξ|

(4.36)
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Numerical calculations in [LLZ02] and done more explicitly in [Aus07a] show that α ≈

.9401. As we shall see, Austrin finds the same expression for the inapproximability of Max

2-Sat, thus proving that this approximation ratio is tight.

4.2 Approximating ∆-Imbalanced Max 2-Sat

In this section, we turn our attention to a problem formulated by Austrin, for which no

previous work on approximability exists. We prove a tight result for ∆-Imbalanced Max

2-Sat which relies on the same assumption described at the end of the previous section,

that worst-case configurations have a simple form.

4.2.1 The Quadratic Program and Semidefinite Program for ∆-Imbalanced

Max 2-Sat

We consider how the quadratic program for Max 2-Sat in Figure 4.2 must be changed.

This is the objective function from the program in Figure 4.2:

max
1
4

∑
i,j

(3− xi − xj − xi · xj) (4.37)

We consider this summation for all pairs 1 ≤ i < j ≤ n consisting of (xi ∨ xj) and

(¬xi ∨ ¬xj). Note that we are no longer considering clauses of the form (xi ∨ ¬xj), so

i, j ≤ n instead of 2n and we will omit the consistency requirement xn+i = −xi. The

definition of ∆-Imbalanced Max 2-Sat says these two clauses have weight wij 1+∆
2 and

wij
1−∆

2 respectively. The sum of this pair in the ILP is thus:

wij
1 + ∆

2
(3− xi − xj − xixj) + wij

1−∆
2

(3− ¬xi − ¬xj − ¬xi¬xj) (4.38)

= wij
1 + ∆

2
(3− xi − xj − xixj) + wij

1−∆
2

(3 + xi + xj − xixj) (4.39)

= wij(3−∆xi −∆xj − xixj) (4.40)

Thus, we have the quadratic program for ∆-Imbalanced Max 2-Sat in Figure 4.5.
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max
1
4

∑
i<j

wij(3−∆xi −∆xj − xixj)

xi ∈ {−1, 1}

Figure 4.5: The quadratic program for ∆-Imbalanced Max 2-Sat

max
1
4

∑
i<j

wij(3−∆v0 · vi −∆v0 · vj − vi · vj)

v0 · vi + v0 · vj + vi · vj ≥ −1 for 1 ≤ i ≤ n
vi ∈ Rn+1 for 1 ≤ i ≤ n
vi · vi = 1 for 1 ≤ i ≤ n

v0 = (1, 0, . . . , 0)
The triangle inequalities, for 1 ≤ i ≤ n :
v0 · vi + v0 · vj + vi · vj ≥ −1
−v0 · vi + v0 · vj − vi · vj ≥ −1

v0 · vi − v0 · vj − vi · vj ≥ −1
−v0 · vi − v0 · vj + vi · vj ≥ −1

Figure 4.6: The semidefinite program for ∆-Imbalanced Max 2-Sat

We can relax the ILP as before to get the program in Figure 4.6. Notice that in both

the ILP and the SDP the ∆ term is merely a dampening factor on the linear terms.

4.2.2 Rounding the Semidefinite Program

We round the SDP in Figure 4.6 as in Section 4.1.3, using the THRESH¯ family of rounding

algorithms. However, unlike in the Max 2-Sat case, different values of ∆ will almost

certainly have different threshold functions. We continue working under the assumption

that the simple function a(x) = β ·x still achieves the optimal approximation ratio, though

there is no a priori reason to believe this, until we show the tightness of the approximability

results for this function a(x) in Section 4.3. Thus, for different values of ∆ we will be

changing the value of β.
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4.2.3 Analysis of THRESH¯

To find the approximation ratio α we must now consider a pair of clauses (xi ∨ xj) and

(¬xi ∨ ¬xj). For this pair, the expected contribution to the ILP objective function (where

the expectation is over the randomness in the rounding algorithm) is:

1
4
wij E[3−∆xi −∆xj − xixj ] (4.41)

For this same clause, the contribution to the SDP objective function is:

1
4
wij(3−∆v0 · vi −∆v0 · vj − vi · vj) (4.42)

We are looking for a lower bound on α so we minimize over all feasible vector solutions

to the SDP:

min
v∈(Sn)n+1 and

v is a feasible solution to the SDP

E[3−∆xi −∆xj − xixj ]
3−∆v0 · vi −∆v0 · vj − vi · vj

(4.43)

We note that, as before, ṽi ·r is still a standard N(0, 1) random variable and xi is still set

to true with probability 1−a(ξi)
2 . The ∆ passes outside the expectation by the linearity of

expectations, so we don’t have to worry about it and thus: E[xi] = a(ξi). For the quadratic

terms, nothing changes, so:

E[xixj ] = 4Γρ̃(a(ξi), a(ξj)) + a(ξi) + a(ξj)− 1

Putting all of these calculations together we find:

E[3−∆xi −∆xj − xixj ] (4.44)

= 3−∆a(ξi)−∆a(ξj)− (4Γρ̃(a(ξi), a(ξj)) + a(ξi) + a(ξj)− 1) (4.45)

= 4− (1 + ∆)a(ξi)− (1 + ∆)a(ξj)− 4Γρ̃(a(ξi), a(ξj)) (4.46)

Thus:
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min
v∈(Sn)n+1 and

v is a feasible solution to the SDP

E[3−∆xi −∆xj − xixj ]
3−∆v0 · vi −∆v0 · vj − vi · vj

(4.47)

= min
(ξi,ξj ,ρ) satisfy triangle constraints

4− (1 + ∆)a(ξi)− (1 + ∆)a(ξj)− 4Γρ̃(a(ξi), a(ξj))
3−∆ξi −∆ξj − ρ

(4.48)

Now following [LLZ02] we let a(x) = β · x so that this becomes:

min
(ξi,ξj ,ρ) satisfy triangle constraints

4− (1 + ∆)β(ξi + ξj)− 4Γρ̃(βξi, βξj)
3−∆ξi −∆ξj − ρ

(4.49)

4.2.4 Conclusion

Austrin bases his approximability results on the assumption that the simple configurations

are the worst ones, a plausible assumption that Lewin, Livnat, and Zwick arrived at through

numerical evidence from MATLAB. We would like to make this same assumption. We state

it formally as a conjecture:

Conjecture 4.2.1. The minima of the following expression all have the form (ξi, ξj , ρ) =

(ξ, ξ,−1 + 2|ξ|):

min
(ξi,ξj ,ρ) satisfy triangle constraints

4− (1 + ∆)β(ξi + ξj)− 4Γρ̃(βξi, βξj)
3−∆ξi −∆ξj − ρ

(4.50)

The intuition for setting ξi = ξj , as explained by Austrin, is as follows: since the function

we are minimizing is symmetric in the ξi and ξj terms, there is no advantage to v0 having

different angles to vi and vj, so we set ξi = ξj . Secondly, the simple configuration says that

ρ = −1+2|ξ| which is equivalent to −2|ξ|+ρ = −1. This is the same as saying that at least

one of the triangle inequalities shown in Figure 4.3 is tight. The intuition is that making

a triangle inequality tight means being on the edge of the feasible configuration space, as

close as possible to the infeasible part of the configuration space which should contain very

bad configurations.
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For our case, we justify making the same assumption (while still noting that it is un-

proven) because the basic form of the expression we are minimizing is very similar to the

expression minimized in [Aus07a], with the only change being the dampening effects of the

∆ terms. The intuition still holds as well. But since our assumption is, at the end of the day,

only based on numerical evidence from [LLZ02], we will provide some numerical evidence

of our own that it is correct. We check Conjecture 4.2.1 for a few values of ∆, with results

shown in Table 4.2.4. To find these configurations we have also minimized over β, though

our investigations suggest that fixing β would have worked equally well, because the basic

form of equation 4.50 does not change for different values of β.

∆ Configuration
0 (0.1846, 0.1846− 0.6309)

.25 (0.1946, 0.1946,−0.6109)
.367 (0.2056, 0.2056,−0.5889)
.5 (0.2150, 0.2150,−0.5701)
.75 (0.2373, 0.2373,−0.5255)

Table 4.2: Worst-case configurations for various values of ∆. In each case, they take a
“simple” form: (ξ, ξ,−1 + 2|ξ|).

The numerical evidence obtained with MATLAB for a few values of ∆ supports our con-

jecture. If we assume Conjecture 4.2.1 for all values of ∆ we arrive at the following expression

for the approximation algorithm, where the configuration is (ξi, ξj , ρ) = (ξ, ξ,−1+2|ξ|) and

we want to pick the best threshold function parameterized by β:

max
β∈[0,1]

min
ξ∈[−1,1]

2− (1 + ∆)β · ξ − 2Γρ̃(βξ)
2−∆ξ − |ξ|

(4.51)

As we will see in the next section, this expression exactly matches Austrin’s inapprox-

imability result for all values of ∆, so this result is tight, assuming our conjecture.
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4.3 Inapproximability Results for Max 2-Sat and ∆-Imbalanced

Max 2-Sat

In [Aus07a], Austrin proves the following general result:

Theorem 4.3.1 (Equation (43) in [Aus07a]). Assuming the UGC it is NP-hard to approx-

imate ∆-Imbalanced Max 2-Sat to within a factor:

min
ξ∈[−1,1]

max
µ∈[−1,1]

2− (1 + ∆)µ− 2Γρ̃(µ)
2−∆ξ − |ξ|

+O(ε) (4.52)

where ρ̃ = |ξ|−1
|ξ|+1

Although Austrin proved that this formula holds for all values of ∆, he did not report

calculations for values of ∆ other than ∆ = 0 (the balanced case) and ∆ ≈ .3673, the

hardest case, which gives an approximation ratio α = .9401.

We use MATLAB together with a package for calculating Bivariate Normal Distribu-

tions1 (the function Γρ̃(µ) in the formula) to graph this formula. Our graph is shown in

Figure 4.7.

This expression matches the one given for approximability in Equation 4.51, so we

conclude that under both the assumptions that led to Equation 4.51 and under the UGC,

the algorithm of Lewin, Livnat and Zwick in [LLZ02] is the best possible, i.e., the graph in

Figure 4.7 is tight because it holds for both approximation and inapproximability.

1See BVNL, “A Matlab function for the computation of bivariate normal cdf probabilities” created by
Alan Genz. Online at http://www.math.wsu.edu/faculty/genz/software/software.html
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Figure 4.7: This graph was plotted based on Austrin’s formula for the inapproximability of
∆-Imbalanced Max 2-Sat. By Equation 4.51 it is a tight curve for both approximability
and inapproximability, filling out the curve in Figure 4.1
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Chapter 5

Conclusion

Our work does not immediately get us closer to proving our conjectures for a general class of

problems because the techniques we applied only served to demonstrate the utility of SDP-

based approximation algorithms. However, as demonstrated by the graph in Figure 4.7, our

work shows in even more stark terms the surprising conclusion of Austrin’s work [Aus07a]:

the hardest instances of ∆-Imbalanced Max 2-Sat are those in which it would seem

we have a “free hint” (as [KKMO04] term it) about the solution. This conclusion is by

no means startling enough to make us question the Unique Games Conjecture, but it does

inspire us to push further.

Though we remarked earlier that the Unique Games Conjecture is stronger than P 6=

NP , there is another likely possibility: proving that the Unique Games Conjecture is equiv-

alent to P 6= NP , i.e., showing that Unique Label Cover is NP-hard. Alternatively, a

new approximation technique might be devised which disproves the UGC, perhaps by giv-

ing an improved approximation ratio for MaxCut, Max 2-Sat, or VertexCover. This

would immediately invalidate much of the work which is based on the UGC.

One (non-mathematical) reason to believe P 6= NP is that despite thousands of possible

problems to tackle and years of trying (not to mention a real monetary incentive) no one

has come across a polynomial time algorithm for any NP-hard problem. By contrast,

the advances in approximation algorithms which started with Goemans and Williamson

[GW95] are relatively recent. Perhaps a radically new technique for devising approximation
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algorithms will be devised. Work on the PCP theory is even newer, especially in light of the

recent reformulation of the PCP theorems due to Dinur [Din06]. With these new techniques

and other advances in hand, it is conceivable that someone could prove that the Unique

Games Conjecture (assuming P 6= NP ) follows from the PCP theorems.

In very recent, independent work, Raghavendra resolves some of our conjectures for

CSPs [Rag08]. It would be very interesting to apply Raghavendra’s techniques in in-

vestigating balanced and imbalanced instances of some of these CSPs to see if Austrin’s

conclusion—balanced instances are not the hardest assuming the Unique Games Conjecture—

still holds.

The larger picture of a connection between semidefinite programming and the Unique

Games Conjecture is that if the UGC fully captures the power of semidefinite programming

than this tells us something very deep about semidefinite programming, even if the Unique

Games Conjecture turns out to be false. Further exploring these implications, and in

particular delving more deeply into the appearance of geometrically-derived constants from

SDPs (such as the Goemans-Williamson constant) in UG-hardness results could prove very

fruitful.

Our work on ∆-Imbalanced Max 2-Sat leaves many open questions. The definition of

∆-Imbalanced Max 2-Sat used in this work and in [Aus07a] is quite restrictive. Austrin

suggests the following possible extensions [Aus]:

1. The total weight on positive clauses is ∆ and the total weight on negative clauses is
1−∆

2. Each variable occurs positively a ∆-fraction of the time

3. The total fraction of positive literals is ∆

Finding algorithmic and hardness results for each of these cases is an interesting open

problem. Another open problem is to find an analytic proof of the fact that the worst

case configurations have a simple form for the ∆-Imbalanced Max 2-Sat semidefinite

program, as conjectured in Section 4.2.4. Finally, the idea of setting up imbalanced and

balanced instances of problems, not just in CSPs, might prove fruitful in other areas. A

very rough analogue in graph theory might be algorithms on trees, balanced or imbalanced.
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In moving from the theoretical world of computational complexity theory, where the

PCP theory is very important, to the more applied parts of computer science, in which

Max 2-Sat can be solved in practice for most instances with a powerful enough computer,

approximation algorithms bridge an important divide. As we have described at great length,

they are theoretically of great interest. But they are also often useful in practice. The

untamed world of heuristics and the separate but related study of average-case analysis both

present important opportunities for applying the techniques of the study of approximation

algorithms. Does the Unique Games Conjecture have implications for the intractability of

algorithms that do well in the average case? How well does a heuristic based on semidefinite

programming perform? If a problem has a relatively inefficient but optimal algorithm, how

good (and under what metrics?) does an approximation algorithm have to be to beat it?

These questions and more point the way towards future work, inspired by the connections

between semidefinite programming and the Unique Games Conjecture.
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