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ABSTRACT
We present a new solution to the “ecological inference” prob-
lem, of learning individual-level associations from aggregate
data. This problem has a long history and has attracted
much attention, debate, claims that it is unsolvable, and
purported solutions. Unlike other ecological inference tech-
niques, our method makes use of unlabeled individual-level
data by embedding the distribution over these predictors
into a vector in Hilbert space. Our approach relies on re-
cent learning theory results for distribution regression, us-
ing kernel embeddings of distributions. Our novel approach
to distribution regression exploits the connection between
Gaussian process regression and kernel ridge regression, giv-
ing us a coherent, Bayesian approach to learning and infer-
ence and a convenient way to include prior information in
the form of a spatial covariance function. Our approach is
highly scalable as it relies on FastFood, a randomized ex-
plicit feature representation for kernel embeddings. We ap-
ply our approach to the challenging political science prob-
lem of modeling the voting behavior of demographic groups
based on aggregate voting data. We consider the 2012 US
Presidential election, and ask: what was the probability that
members of various demographic groups supported Barack
Obama, and how did this vary spatially across the country?
Our results match standard survey-based exit polling data
for the small number of states for which it is available, and
serve to fill in the large gaps in this data, at a much higher
degree of granularity.

Keywords
Machine learning; supervised learning; kernel methods; Gaus-
sian processes; distribution regression

1. INTRODUCTION
The name ecological inference refers to the idea of ecolog-

ical correlations [28], that is correlations between variables
observed for a group of individuals, as opposed to individ-
ual correlations, where the individuals are the unit of anal-
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ysis. The ecological inference problem has much in common
with the “modifiable areal unit problem” [20] and Simpson’s
paradox. Simply put, it is the problem of inferring individ-
ual correlations from ecological correlations. This challenge
arises in computational advertising, healthcare data, opin-
ion survey data, and population health data, because in each
case for privacy or cost reasons, we are missing individual-
level data, we have access to aggregate-level data, and we
want to make individual-level predictions. One way to un-
derstand the reason it is called a “problem” is to consider a
two-by-two contingency table, with unknown entries inside
the table, and known marginals. As shown in the contin-
gency table below, we might know that a certain electoral
district’s voting population is 43% men and 57% women and
that in the last election, the outcome was 63% in favor of
the Democratic candidate and 37% in favor of the Repub-
lican candidate. These percentages correspond to the num-
bers of individuals shown below: Is it possible to infer the

Democrat Republican
Men ? ? 1,500

Women ? ? 2,000
2,200 1,300

joint and thus conditional probabilities, for example can we
ask, what was the Democratic candidate’s vote share among
women voters? It is clear that only very loose bounds can be
placed on these probabilities without any more information.
Based on the fact that rows and columns must sum to their
marginals, we know, e.g., that the number of Democrats who
are men is between 0 and 1,500. These types of determin-
istic bounds have been around since the 1950’s, under the
name the method of bounds [4].

What if we are given a set of electoral districts, where for
each we know the marginals of the two-by-two contingency
table, but none of the inner entries? Then, thinking statis-
tically, we might be tempted to run a regression, predict-
ing the electoral outcomes based on the gender breakdowns
of the districts. But this approach, formalized as Good-
man’s method [8] a few years after the method of bounds
was proposed, can easily lead us astray—there is not even a
guarantee that outcomes be bounded between 0 and 1, and
it ignores potentially useful information provided by deter-
ministic bounds.

We review related work in Section 2 and provide the nec-
essary background on kernel embeddings of distributions,
distribution regression, and GP regression in Section 3. We
formalize the ecological inference problem in Section 4 and
propose our method in Section 5. We apply it to the case
of the 2012 US presidential election in Section 6, comparing
our results to survey-based exit polls.



2. RELATED WORK
The ecological inference problem has a long history of solu-

tions, counter-solutions, and it is often taught with a note of
grave caution and stark warnings that ecological inference is
to be avoided at all costs, usually in favor of individual-level
surveys. As with Simpson’s paradox, it should come as no
surprise that correlations at one level of aggregation can and
do flip signs at other levels of aggregation. But abandoning
all attempts at ecological inference in favor of surveys is not
feasible or appropriate in many circumstances—relevant re-
spondents are no longer alive to answer historical questions
of interest; subjects are reluctant to answer questions about
sensitive topics like drug usage or cheating—meaning social
scientists have been hard-pressed and even discouraged from
studying many interesting and important questions. Eco-
logical inference problems appear in demography, sociology,
geography, and political science, and—as discussed in [13]—
landmark legislation in the US such as the Voting Rights
Act requires a solution to the ecological inference problem
to understand racial voting patterns1.

This problem has attracted a variety of approaches over
the years as summarized in [13], which also proposes a Bayesian
statistical modeling framework incorporating the method of
bounds (thus uniting the deterministic and probabilistic ap-
proaches). [13] sparked a renewed interest in ecological in-
ference, much of which is summarized in [14]. A parametric
Bayesian approach to this setting was proposed in [12] and
a semiparametric approach was proposed in [23].

Our method differs from existing methods in fours ways.
First, it uses more information than is typically considered
in a standard ecological regression setting: we assume that
we have access to representative unlabeled individual-level
data. In the voting example, this means having a sample
of individual-level census records (“microdata”) about each
electoral district. Second, our method incorporates spatial
variation. Spatial data is a common feature of ecological
regressions (which, after all, usually have much to do with
geography) but it is only very recently that ecological in-
ference methods have begun to address spatial variation ex-
plicitly [14]. Third, while our method may be applied to the
classic ecological inference problem of inferring individual
level correlations from aggregate data, we propose that it is
most well-suited to a related ecological problem, common in
political science: inferring the unobserved behavior of sub-
groups based on the aggregate behavior of groups of which
they are part. For our application, this means inferring the
voting behavior of men and women separately by electoral
district, given aggregate voting information by district. Fi-
nally, our work is nonparametric. Kernel embeddings are
used to capture all moments of the probability distribution
over covariates, and Gaussian process regression is used to
non-parametrically model the dependence between predic-
tors and labels.

A related line of work, termed“learning from label propor-
tions” by some authors [24, 15, 30, 21], has the individual-
level goal in mind, and aims to build a classifier for individ-
ual instances based only on group level label proportions.
While in principle, this approach could be used in our set-

1Long-standing solutions have proved quite inadequate: in
one court case involving the Voting Rights Act, a qualified
expert testified, based on Goodman’s method, that the per-
centage of blacks who were registered to vote in a certain
electoral district exceeded 100% [13]. This evidently false
claim was apparently made earnestly.

ting, since we are only interested in subgroup level predic-
tions the extra task of estimating individual level predictions
is probably not worth the effort considering we are working
with n = 10 million individuals.

Our method is based on recent advances in distribution re-
gression [6, 33], which we generalize to address the ecological
inference case. Previous work on distribution regression has
relied on kernel ridge regression, but we use Gaussian pro-
cess (GP) regression instead, thus enabling us to incorporate
spatial variation, learn kernel hyperparameters, and provide
posterior uncertainty intervals, all in a fully Bayesian set-
ting. For scalability (our experiments use n = 10 million
individuals), we use a randomized explicit feature represen-
tation (“FastFood”) [16] rather than the kernel trick.

3. BACKGROUND
In this section we review kernel embeddings for proba-

bility distributions, distribution regression, FastFood, and
Gaussian process (GP) regression.

3.1 Kernel embeddings of distributions
Kernel embeddings of distributions, e.g. [31, 32, 5], are a

powerful class of reproducing kernel Hilbert space (RKHS)
techniques that map joint, marginal and conditional proba-
bility distributions to vectors in a high (or infinite) dimen-
sional feature space. Let φ : Rn → H. It has been shown
that if a kernel map φ is universal/characteristic (e.g. a
Gaussian RBF kernel), then for iid samples x ∼ X, the
mean embedding in feature space, denoted:

µX = Ex∼X [φ(x)] (1)

completely characterizes the distribution in the sense that
any two distributions with a difference in any moment will
be mapped to a different point in the Hilbert space. This
result has been used in a variety of kernel-based statistical
tests, including tests of independence and two-sample tests
[10]. It is a key feature of our method, because it will allow
us to link aggregate labels to individual-level data without
throwing out any information.

In this work, we use the simple empirical mean estimator
for the kernel mean:

µ̂X =
1

N

∑
j

φ(xj) (2)

It is shown in Smola et al. [31] that this plug-in estimator is
a consistent, and it converges to µX with rate O(Rn(H) +
1/
√
n), where Rn(H) is the Rademacher complexity of the

RKHS. As long asRn(H) = O(n−1/2) we have the (optimal)
parametric rate. Recent work has focused on improving this
estimator using James-Stein shrinkage [17].

3.2 Distribution regression
In this section, we formalize distribution regression, the

task of learning a classifier or a regression function that maps
probability distributions to labels. The problem is funda-
mentally challenging because we only observe the probability
distributions through groups of samples from these distribu-
tions. Specifically, our dataset is structured as follows:(

{xj1}
N1
j=1, y1

)
,
(
{xj2}

N2
j=1, y2

)
, . . .

(
{xjn}Nn

j=1, yn
)

(3)

where group i has a single real-valued label yi and Ni indi-
vidual observations (e.g. demographic covariates for Ni in-

dividuals) denoted xji ∈ Rd.



To admit a theoretical analysis, it is assumed that the
probability distributions themselves are drawn randomly from
some unknown meta distribution of probability distributions.
The intuition behind why distribution regression is possible
is that if each group of samples are iid draws from a distribu-
tion which is itself an iid drawn from the meta distribution,
then we will be able to learn.

Recently, this“two-stage sampled”structure was analyzed,
showing that a ridge regression estimator is consistent [33]
with polynomial rate of convergence for almost any meta-
distribution of distributions that are sufficiently smooth.
The basic approach is as follows: use the kernel mean es-
timator of Eq. (2) for each group separately to estimate:

µ̂1 =
1

N1

N1∑
j=1

φ(xj1), . . . , µ̂n =
1

Nn

Nn∑
j=1

φ(xjn) (4)

Next, use kernel ridge regression [29] to learn a function f :

y = f(µ̂) + ε (5)

where the objective is to minimize the L2 loss subject to a
“ridge” complexity penalty weighted by a positive constant
λ:

f̂ = arg minf∈Hf

∑
i

[yi − f(µ̂i)]
2 + λ‖f‖2Hf

(6)

In [33] a variety of kernels for f corresponding to the
Hilbert space Hf are considered. We follow the simplest
choice of the linear kernel k(µ̂i, µ̂j) = 〈µ̂i, µ̂j〉, motivated by
the fact that we are already working in Hilbert space over
the µi. Following the standard derivation of kernel ridge re-
gression [29], we can find the function f in closed form for a
new test group µ∗:

f(µ∗) = k∗(K + λI)−1[y1, . . . , yn]T (7)

where k∗ = [〈µ̂1, µ∗〉, . . . , 〈µ̂n, µ∗〉] and Kab = 〈µ̂a, µ̂b〉. In
practice, it is hard to know whether the conditions under
which the proofs in these papers hold are met. As a partial
remedy, our Bayesian approach allows us to quantify the
degree of uncertainty in our posterior predictions. Also, as
shown in the experiments, a useful diagnostic is to measure
the distance between training and test distributions.

3.3 FastFood for explicit kernel expansion
Naively implementing distribution regression using the ker-

nel trick is not scalable in the setting we consider: to com-
pute just one entry inK requires computingKab = 〈µ̂a, µ̂b〉 =

1
NaNb

∑
j1j2

k(xj1a , x
j2
b ). This computation is O(N2) (where

we assume for simplicity Ni = N, ∀i) so computing K is
O(n2N2). In our application, N ≈ 104, so we need a much
more scalable approach. Since we ultimately only need to
work with the mean embeddings µi rather than the indi-
vidual observations xji , an explicit feature representation,
even if it is very high-dimensional, will drastically reduce
our computational costs.

We use an approximate kernel transformation called Fast-

Food [16], which finds a d-dimensional approximation φ̂(x) ∈
Rd of φ(x) for every x. Here φ can be any radial basis func-
tion (RBF) kernel. Take Gaussian RBF kernel as an ex-
ample, FastFood boils down to the following transformation
due to Rahimi and Recht [25]:

φ(x) = p−1/2 exp(i[V x])

where i is the imaginary unit of a complex number and V
is a appropriately scaled p × d Gaussian random matrix
with p > d. FastFood allows us to approximately com-
pute V x without explicitly construct V . In particular, Fast-
Food transformation takes V = [V T1 , V

T
2 , ..., V

T
dp/de]

T and
each square d× d matrix is given by:

Vj =
1

σ
√
d
SHGΠHB,

Here S,B,G are diagonal random matrices (nonnegative
scaling, Rademacher and Gaussian respectively), Π is a ran-
dom permutation, and H is the Walsh-Hadamard matrix.
Every single one of these transformation can be computed
in almost linear time. The whole transformation φ(x) can
be therefore computed in O(p log d) time. This is orders of
magnitude faster than random kitchen sinks [25] which costs
O(pd) per transformation or the kernel trick which needs to
do an O(N3) inversion of a dense N ×N kernel matrix.

It is shown in [16, Theorem 6] that for any x, x′, 〈φ̂(x), φ̂(x′)〉
converges to 〈φ(x), φ(x′)〉 with rate O( log(2/δ)

p1/2
) where δ is

the failure probability. This can be viewed as a Johnson-
Lindenstrauss transformation of an infinite dimensional space
to a finite dimensional Euclidean space while preserving the
angles and distances in the original space. While this is not
a uniform convergence bound as with the random features
in [25], the exponential tail enables us to simultaneously
guarantee an exponential number of kernel evaluations via
the union bound. Not surprisingly, it has been empirically
shown to be comparable in accuracy and to approximate
the kernel transformation for all data points quite well. For
simplicity, from here onwards we will overload notation and
refer to φ(x) ∈ Rp as our feature mapping which is under-
stood to be approximated with FastFood.

3.4 Gaussian process regression
In this section, we briefly state the main results we need

from Gaussian process regression [26], reviewing the well-
known connection between the posterior mean in GP regres-
sion and the kernel ridge regression estimator of Eq. (7).

Given observations (s1, y1), . . . (sn, yn) a Gaussian process
prior on a function f where our model is y = f(s) + ε is
written:

f ∼ GP(0, k(s, s′))

with mean 0 and covariance function k. This implies that for
a finite set of locations X = {s1, . . . , sn}, the distribution of
f = [f(s1), . . . , f(sn)]> is multivariate Gaussian:

f ∼ N (0,K) (8)

where Kij = k(si, sj). Notice that we have switched from a
function f(s) to a vector f . This is because it is only for-
mally correct to consider a probability distribution over the
finite-dimensional vector f , not over the infinite dimensional
function f(s). For a formal discussion see [35]. Conditional
on the latent variable f , we have a Gaussian observation
model:

yi|f(si) ∼ N (0, σ2), ∀i (9)

for variance parameter σ2 which can be thought of as mea-
surement error (known as the “nugget” in geostatistics). For
a fixed set of locations X, it is straightforward to sample f
from its prior distribution in Eq. (8). Due to conjugacy, we
can marginalize out f in closed form to find the distribution:

y ∼ N (0,K + σ2I) (10)



If we wish to make a prediction at a new location s∗, the
standard predictive equations for GP regression [26], derived
by conditioning a multivariate Gaussian distribution, tell us:

y∗ | s∗, X,y ∼ N (k∗(K+σ2I)−1y, k∗∗−k∗(K+σ2I)−1k∗>)
(11)

where Kij = k(si, sj) and k∗ = [k(s1, s
∗) . . . k(sn, s

∗)] and
k∗∗ = k(s∗, s∗). Thus we have a way of combining a prior
over f , parametrized by k(s, s′), with observed data to ob-
tain a posterior distribution over a new prediction y∗ at a
new location s∗. This is a very powerful method, as it en-
ables a fully Bayesian treatment of regression, a coherent
approach to kernel learning through the marginal likelihood
(for details see [26]), and posterior uncertainty intervals.

We can immediately see the connection between the ker-
nel ridge regression estimator in Eq. (7) and the posterior
mean of the GP in Eq. (11). (A superficial difference is that
in Eq. (7) our predictors are µ̂i while in Eq. (11) they are
generic locations si, but this difference will go away in Sec-
tion 5 when we propose using GP regression for distribution
regression.) The predictive mean of GP regression is ex-
actly equal to the kernel ridge regression estimator, with σ2

corresponding to λ. In ridge regression, a larger penalty λ
leads to a smoother fit (equivalently, less overfitting), while
in GP regression a larger σ2 favors a smoother GP poste-
rior because it implies more measurement error. For a full
discussion of the connections see [2, Sections 6.2.2-6.2.3].

4. ECOLOGICAL INFERENCE
In this section we state the ecological inference problem

that we intend to solve. We use the motivating example of
inferring Barack Obama’s vote share by demographic sub-
group (e.g. men versus women) in the 2012 US presidential
election, without access to any individual-level labels. Vote
totals by electoral precinct are publicly available, and these
provide the labels in our problem. Predictors are in the
form of demographic covariates about individuals (e.g. from
a survey with individual level data like the census). The
challenge is that the labels are aggregate, so it is impossi-
ble to know which candidate was selected by any particular
individual. This explains the terminology: “ecological cor-
relations” are correlations between variables which are only
available as aggregates at the group level [28]

We use the same notation as in Section 3.2. Let xji ∈ Rd
be a vector of covariates for individual i in region j. Let
wji be survey weights2. Let yi be labels in the form of two-
dimensional vectors (ki, ni) where ki is the number of votes
received by Obama out of ni total votes in region i. Then
our dataset is:(

{xj1}
N1
j=1, y1

)
,
(
{xj2}

N2
j=1, y2

)
, . . . ,

(
{xjn}Nn

j=1, yn
)

(12)

We will typically have a rich set of covariates available, in
addition to the demographic variables we are interested in
stratifying on, so the xji will be high-dimensional vectors
denoting gender, age, income, education, etc.

Our task is to learn a function f from a demographic sub-
group (which could be everyone) within region i to the prob-
ability that this demographic subgroup supported Obama,

2Covariates usually come from a survey based on a random
sample of individuals. Typically, surveys are reported with
survey weights wji for each individual to correct for oversam-
pling and non-response, which must be taken into account
for any valid inference (e.g. summary statistics, regression
coefficients, standard errors, etc.).

i.e. the number of votes this group gave Obama divided by
the total number of votes in this group.

5. OUR METHOD
In this section we propose our new ecological inference

method. Our approach is illustrated in a schematic in Figure
1 and formally stated in Algorithm 1.
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Figure 1: Illustration of our approach. Labels
y1, y2 and y3 are available at the group level giving
Obama’s vote share in regions 1, 2, and 3. Co-
variates are available at the individual level giv-
ing the demographic characteristics of a sample of
individuals in regions 1, 2, and 3. We project
the individuals from each group into feature space
using a feature map φ(x) and take the mean by
group to find high-dimensional vectors µ1, µ2 and µ3,
e.g. µ1 = 1

3
(φ(x11) + φ(x21) + φ(x31)). Now our prob-

lem is reduced to supervised learning, where we
want to learn a function f : µ → y. Once we have
learned f we make subgroup predictions for men
and women in region 3 by calculating mean embed-
dings for the men µm3 = 1

2
(φ(x33) + φ(x43)) and women

µw3 = 1
3
(φ(x13) + φ(x23) + φ(x53)) and then calculating

f(µm3 ) and f(µw3 ). For a more rigorous description
of our algorithm see Algorithm 1.

Recall the two-stage distribution regression approach in-
troduced in Section 3.2. Our method has a similar approach.
To begin, we use FastFood as introduced in Section 3.3 with
an RBF kernel to produce an explicit feature map φ and
calculate the mean embeddings3, one for each region i, of
Eq. (4) with survey weights:

µ̂1 =

∑
j w

j
1φ(xj1)∑
j w

j
1

, . . . , µ̂n =

∑
j w

j
nφ(xjn)∑
j w

j
n

(13)

3 Distribution regression with explicit random features was
previously considered in Oliva et al. [19] using Rahimi and
Recht [25] to speed up an earlier distribution regression
method based on kernel density estimation [22]. This ap-
proach has comparable statistical guarantees to distribution
regression using RKHS-mean embeddings but inferior em-
pirical performance [33]. As far as we are aware, using Fast-
Food kernel mean embeddings for distribution regression is
a novel approach.



Algorithm 1 Ecological inference algorithm

Input:
(
{(xj1, w

j
1)}N1

j=1, s1, y1
)
, . . . ,

(
{(xjn, wjn)}Nn

j=1, sn, yn
)

1: for i = 1 . . . n do
2: Calculate µ̂i using Eq. (13) with FastFood.
3: Calculate µmi using Eq. (17) with FastFood.
4: end for
5: Learn hyperparameters θ̂ = (σ2

x, σ
2
s , `) of the GP model

specified by Eqs. (14)–(15) with observations yi at lo-
cations (µ̂1, s1), . . . , (µ̂n, sn) using gradient descent and
the Laplace approximation.

6: Make posterior predictions using θ̂ at locations
(µm1 , s1), . . . , (µmn , sn) using the Laplace approximation.

Output: Posterior means and variances for ym1 , . . . , y
m
n

Next, instead of kernel ridge regression, we use GP regres-
sion. Recall that unlike in distribution regression our labels
yi are given by vote counts (ki, ni). We use a Binomial like-
lihood as the observation model in GP regression (this is
sometimes known as a logistic Gaussian process [27]). We
transform each component of the latent real-valued vector f
of Section 3.4 by the logistic link function σ(f) = 1

1+e−f and

we replace Eq. (9) with the following:

ki|f(xi) ∼ Binomial(ni, σ(f(xi))) (14)

where we use the formulation for the Binomial distribu-
tion of ni trials and probability of success σ(f(xi)). This
is the generalized linear model (GLM) specification for bi-
nary data, combining a Binomial distribution with logistic
link function [3, Ch. 7].

The predictors in our GP are the mean embeddings µ̂1, . . . , µ̂n.
We also include spatial information in the form of 2-dimensional
spatial coordinates si giving the centroid of region i. Putting
these predictors together we adopt an additive covariance
structure:

f ∼ GP(0, σ2
x〈µ̂i, µ̂j〉+ ks(si, sj)) (15)

Where we have used a linear kernel between mean embed-
dings weighted by a variance parameter σ2

x. Since the mean
embeddings are already in feature space using the FastFood
approximation to the RBF kernel, we are approximately us-
ing the RBF kernel. For the spatial coordinates we use the
Matérn covariance function which is a popular choice in spa-
tial statistics [11], with ν = 3/2, length-scale ` and variance
parameter σ2

s :

k(s, s′) = σ2
s

(
1 +
‖s− s′‖

√
3

`

)
exp

(
−‖s− s

′‖
√

3

`

)
(16)

By adding together the linear kernel between mean em-
beddings and the spatial covariance function, we allow for a
smoothly varying surface over space and demographics. The
intuition is that this additive covariance encourages predic-
tions for regions which are nearby in space and have simi-
lar demographic compositions to be similar; predictions for
regions which are far away or have different demographics
are allowed to be less similar. GP regression with a spa-
tial covariance function is equivalent to the spatial statistics
technique of kriging—we are effectively smoothly interpolat-
ing y values over a very high dimensional space of predic-
tors. Another way to think about additivity is that we are
accounting for a spatially autocorrelated error structure in

the predictions we get from covariates alone. (We also con-
sidered a multiplicative structure, which had slightly worse
performance.)

Eq.s (14)-(15) complete our hierarchical model specifica-
tion. For non-Gaussian observation models like Eq. (14),
the posterior prediction in Eq. (11) is no longer available
in closed form due to non-conjugacy. We follow the stan-
dard approach for GP classification and logistic Gaussian
processes and use the Laplace approximation [36, 27]. The
Laplace approximation gives an approximate posterior dis-
tribution for f , from which we can calculate a posterior dis-
tribution over the ki of Eq. (14) as explained in detail in [26,
Section 3.4.2]. The Laplace approximation also allows us to
calculate the marginal likelihood, which is the probability
of the observed data, integrating out f . To learn σ2

x, σ
2
s ,

and `, we use gradient ascent to maximize the log marginal
likelihood.

Once we have learned the best set of hyperparameters for
our model we can make predictions for any demographic
subgroup of interest. To predict the fraction of men who
voted for Obama, we create new mean embedding vectors
by gender and region, modifying Eq. (13):

µ̂mi =

∑
jm wj1φ(xj1)∑

jm wj1
, ∀i (17)

where jm are the indices of the observations of men in region

i and µ̂mi is the mean embedding of the covariates for the
men in region i. We then make posterior predictions using
the Laplace approximation as above at these new gender-
region predictors. Notice that for a new µ∗ this requires
calculating k∗ = [k1∗, k2∗, . . . , kn∗] of Eq. (11) where ki∗ =
σ2
x〈µ̂i, µ∗〉+ ks(si, s∗) using Eq. (15). Thus new predictions

will be similar to existing predictions in regions with similar
covariates and they will be similar to existing predictions at
the same (and nearby) locations.

Our algorithm is stated in Algorithm 1. We now ana-
lyze its complexity. Lines 2–3 are calculated by streaming
through the data for individuals. For each individual, cal-
culating the FastFood feature transformation φ(xji ) takes

O(p log d) where xji ∈ Rd and φ(xji ) ∈ Rp. To save memory,

there’s no need to store each φ(xji ). We simply update the

weighted average µ̂i by adding wijφ(xji ) to it. Notice that the
demographic subgroup considered in line 3 is simply a subset
of the observations calculated in line 2, so there is no added
cost to calculate the µmi or indeed a set of µm1

i , . . . , µ
mq

i for
q different demographic subgroups of interest. Overall, if
we have N individuals the for loop takes time O(Np log d).
Usually p � N and d � N so this is practically linear and
trivially parallelizable.

On line 5 to learn the hyperparameters in the GP re-
gression requires calculations involving the covariance ma-
trix K ∈ Rn×n. Each entry in K requires computing a dot
product 〈µ̂i, µ̂j〉 which takes O(p) and it requires computing
the Matérn kernel for the spatial locations, which is a fast
arithmetic calculation. Once we have K, the Laplace ap-
proximation is usually implemented with Cholesky decom-
positions for numerical reasons. The runtime of computing
the marginal likelihood and relevant gradients is O(n3) [26],
and gradient ascent usually takes less than a hundred steps
to converge. Posterior predictions on line 6 require calcu-
lating k∗ ∈ R1×n for each µmi so this is O(n2). Reusing
the Cholesky decompositions above means predictions can
be made in O(n2). GP regression requires O(n2) storage.



Overall, we expect n � N , so our algorithm is practically
O(N), with little extra computational cost arising from the
GP regression as compared to the work of streaming through
all the observations. The N observations do not need to be
stored in memory, so the overall memory complexity is only
O(n2).

6. EXPERIMENTS
In this section, we describe our experimental evaluation,

using data from the 2012 US Presidential election, and com-
pare our results to survey-based exit polls, which are only
available for the 18 states for which large enough samples
were obtained. Our method enables us to fill in the full pic-
ture, with much finer-grained spatial estimation and results
for a much richer variety of demographic variables. This
demonstration shows the applicability of our new method to
a large body of political science literature (see, e.g. [7]) on
voting patterns by demographics and geography. Because
voting behavior is unobservable and due to the ecological
inference problem, previous work has been mostly based on
exit polls or opinion polls.

We obtained vote totals for the 2012 US Presidential Elec-
tion at the county level4. Most voters chose to either re-
elect President Barack Obama or vote for the Republican
party candidate, Mitt Romney. A small fraction of voters
(< 2% across the country) chose a third party candidate.
Separately, we obtained data from the US Census, specifi-
cally the 2006-2010 American Community Survey’s Public
Use Microdata Sample (PUMS). The American Community
Survey is an ongoing survey that supplements the decen-
nial US census and provides demographically representatives
individual-level observations. PUMS data is coded by pub-
lic use microdata areas (PUMAs), contiguous geographic re-
gions of at least 100,000 people, nested within states. We
used the 5-year PUMS file (rather than a 1-year or 3-year
sample) because it contains a larger sample and thus there is
less censoring for privacy reasons. To merge the PUMS data
with the 2012 election results, we created a mapping between
counties and PUMAs5, merging individual-level census data
and aggregating vote totals as necessary to create larger geo-
graphic regions for which the census data and electoral data
coincided. The mapping between PUMAs and counties is
many-to-many, so we were effectively finding the connected
components. Since counties and PUMAs do not cross state
borders, none of the geographic regions we created cross
state borders. An example is shown in Figure 2.

In total, we ended up with 837 geographic regions rang-
ing from Orleans Parish in New Orleans, which voted 91%
for Barack Obama to Davis County, a suburb of Salt Lake
City, Utah which voted 84% for Mitt Romney. For the cen-
sus data, we excluded individuals under the age of 18 (vot-
ing age in the US) and non-citizens (only citizens can vote
in presidential elections). There were a total of 10,787,907
individual-level observations, or in other words, almost 11
million people included in the survey. The mean number
of people per geographic region was 12,812 with standard
deviation 21,939.

There were 223 variables in the census data, including
both categorical variables such as race, occupation, and ed-
ucational attainment and real valued variables such as in-

4https://github.com/huffpostdata/election-2012-results
5using the PUMA 2000 codes and the tool at
http://mcdc.missouri.edu/websas/geocorr12.html

(a) (b)

Figure 2: Election outcomes were available for
the 67 counties in Florida shown in (a). Demo-
graphic data from the American Community Sur-
vey was available for 127 public use microdata areas
(PUMAs) in Florida, which sometimes overlapped
parts of multiple counties and sometimes contained
multiple counties. We merged counties and PUMAs
as described in text to create a set of disjoint regions
with the result of 37 electoral regions as shown in
(b).

come in past 12 months (in dollars) and travel time to work
(in minutes). We divided the real-valued variables by their
standard deviation to put them all on the same scale. For
the categorical variables with D categories, we converted
them into D dimensional 0/1 indicator variables, i.e. for the
variable “when last worked” with categories 1 = “within the
past 12 months,” 2 = “1-5 years ago,” and 3 = “over 5 years
ago or never worked” we mapped 1 to [1 0 0]T , 2 to [0 1 0]
and 3 to [0 0 1].

Putting together the indicator variables and real-valued
variables, we ended up with 3,251 variables total. For every
single individual-level observation, we used FastFood with
an RBF kernel to generate a 4,096-dimensional feature rep-
resentation. Using Eq. (13) we calculated the weighted mean
embedding for each region. The result was a set of 837 vec-
tors which were 4,096-dimensional.

We treated the vote totals for Obama and Romney as is,
discarded the remaining third party votes as the exit polls we
use for validation did not report third party votes. Thus for
each region, we had a positive integer valued 2-dimensional
label giving the number of votes for Obama and the total
number of votes.

We focused on the ecological inference problem of pre-
dicting Obama’s vote share by the following demographic
groups: women, men, income ≤ US$50,000 per year, income
between $50,000 and $100,000 per year, income ≥ 100,000
per year, ages 18-29, 30-44, 45-64, and 64 plus. For each
region, we used the strategy outlined above, restricting our
census sample to only those observations matching the sub-
group of interest and creating new mean embedding predic-

tors as in Eq. (17), µ
subgroup
i . We made predictions for each

region-demographic pair. Note that we have made our task
harder than necessary to demonstrate our method; we could
have trained our model using the exit polling data, where
available, and we would certainly recommend practitioners
use all available data to get the best possible estimates.

All of our models were fit using the GPstuff package with
scaled conjugate gradient optimization and the Laplace ap-
proximation [34]. Since n� N , the time required to fit the
GP model and make predictions is much less than the time



(a) Exit poll results for women (b) Exit poll results for men

(c) Ecological regression results for women (d) Ecological regression results for men

Figure 3: Support for Obama among women (a) and men (b) in the 18 states for which exit polling was done;
due to cost, no representative data was collected for the majority of states or for regions smaller than states.
Support for Obama among women (c) and men (d) in 837 different regions as inferred using our ecological
regression method.

required to preprocess the data to create the mean embed-
dings at the beginning of Algorithm 1.

7. RESULTS
We learned the following hyperparameters for our GP:

σ2
s = 0.18, ` = 7.92, and σ2

x = 4.56. The σ2 parameters can
be roughly interpreted as the“fraction of variance explained”
so the fact that σ2

x is much larger than σ2
s means that the

demographic covariates encoded in the mean embedding are
much more important to the model than the spatial coordi-
nates. The length-scale for the Matérn kernel is a little more
than half the median distance between locations, which indi-
cates that it is performing a reasonable degree of smoothing.
We used 10-fold crossvalidation to evaluate our model and
ensure that it was not overfitting, an important considera-
tion as generalization performance is critical. The root mean
squared error of the model was 2.5 and the mean log predic-
tive density was -1.9. Predictive density is a useful measure
because it takes posterior uncertainty intervals into account.
For comparison, predicting the national average of Obama
receiving 51.1% of the vote in every location has a root mean
squared error of 8.3. As a sensitivity analysis, we also con-
sidered a multiplicative model, for which the performance
was comparable.

To validate our models, we compared to the 2012 exit
polls, conducted by Edison Research for a consortium of
news organizations. National results were based on inter-
views with voters in 350 randomly chosen precincts, and
state results in 18 states were based on interviews in 11 to
50 random precincts. In these interviews, conducted as vot-
ers left polling stations, voters were asked who they voted

for and a variety of demographic questions about themselves.
Bias due to factors such as unrepresentativeness of the sam-
pled precincts and inadequate coverage of early or absentee
voters could be an issue [1]. The national results had a mar-
gin of error (corresponding to a 95% uncertainty interval) of
4 percentage points6 and the state results had a margin of
error of between 4 and 5 percentage points [18]. For com-
paring to the 18 state-level exit polls, we aggregated our
geographic regions by state, weighting by subgroup popula-
tion.

As a preview of our results by gender, income, and age,
and to get an idea of the power of our method, Figure 3
shows four maps visualizing Obama’s support among women
and men. In Figures 3a–3b, we show the results from the
exit polls, at the state level, for only 18 states. In Figures 3c–
3d we fill in the missing picture, providing estimates for 837
different regions. We compare to competing methods below
for national-level gender estimates. In the supplementary
materials, we consider the non-binary demographic covari-
ates age and income and the case of regional-level estimates,
which present a difficulties for the competing methods.

7.1 Gender
Voting by gender is shown in Figure 4, where we compare

our results to the exit poll results. The fit is quite good,
with correlations equal to 0.96 for men and 0.94 for women.
The inference that we are most interested in is the gender

6This presumably corresponds to a sample size of only n =
600 individuals, since the usual margin of error reported by

news organizations is 1.96
√

.52

n−1
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