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We propose a new test for space-time interaction, using a Mercer kernel-based statistic for measuring the dis-
tance between probability distributions. As a concrete example, using a geocoded, time-stamped dataset from
Chicago of almost 9 million calls to 911 between 2007 and 2010, we ask whether any of these call types are as-
sociated with shootings or homicides nearby in space and time. Standard correlation techniques do not produce
meaningful results in the spatiotemporal setting because underlying spatial effects (e.g., “bad” neighborhoods)
and temporal effects (e.g., more crimes in the summer) could introduce spurious correlations. To address this
issue, a handful of statistical tests for space-time interaction have been proposed, which explicitly control for
separable spatial and temporal dependencies. Yet these classical tests each have limitations. Our analysis sheds
new light on the limitations of the existing tests, especially the Mantel test, and suggests a simple, theoretically
grounded fix for this popular test (which has recently come under much scrutiny). We demonstrate how our new
test can be extended to the bivariate and forward in time cases, enabling discovery of spatiotemporal leading
indicators that are predictive of a target point process while controlling for purely spatial and purely temporal
dependence. We compare our new test to existing tests on simulated and real data, where it outperforms the
classical tests. We demonstrate its applicability to questions in criminology and predictive policing by using
it to test for forward-in-time bivariate space-time interactions between disorder and crime and between various
911 call types and shootings/homicides.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

What is the relationship between home foreclosures and vi-
olent crime8,11? It might be surprising at first to consider that
simply estimating a meaningful measure of association, given
two spatiotemporal point patterns, is non-trivial. We illustrate
this point in Figure 1: in the left panel, we have plotted the
time series of weekly violent crime and calls to Chicago’s
311 non-emergency services number about vacant/abandoned
buildings (vacant buildings were highlighted as a possible me-
diator of the link between foreclosures and crime in8). Pear-
son’s correlation is 0.78. In the right panel, we display a scat-
terplot of the number of incidents of each event, with obser-
vations aggregated to the census tract level. Pearson’s corre-
lation is 0.73.

Can we thus conclude that there is a meaningful association
between vacant/abandoned buildings and violent crime? Not
necessarily. Based on a new statistical test for space-time in-
teraction described in detail below, we conclude that the corre-
lation structure between violent crime and vacant/abandoned
buildings is explained by separable spatial and temporal fac-
tors (the p-value for the null hypothesis of no space-time inter-
action is 0.154, i.e. non-significant). Put another way, while
the two types of events co-occur in space and co-occur in time,
they do not co-occur in space and time more than is explained

a)Also at Strategic Technologies, Google

by spatial (e.g. neighborhood) and temporal (e.g. seasonal) ef-
fects. Of course, this is only an illustration: more careful ev-
idence would be needed to evaluate the relationship between
foreclosures and crime.

A key feature of spatial and temporal data is the non-
independent nature of the observations. Valid statistical in-
ference requires accounting for this dependence structure in
the data. In the application area we consider, predictive polic-
ing, underlying spatial patterns (e.g., “bad neighborhoods”
and varying density of offenders and targets) and temporal
patterns (e.g., higher crime in the summer) are well known,
and failing to take these factors into account will lead to spu-
rious correlations between different types of crimes. Thus we
wish to identify “leading indicators” for which occurrence in
a particular place at a particular time is predictive of violent
crime nearby in space and time, after controlling for purely
spatial and purely temporal dependencies.

Knox20, Mantel25, and Diggle et al.9 all developed impor-
tant and widely used tests for space-time interaction with spa-
tiotemporal point processes. While each of these statistical
tests has different features, a fundamental limitation of each
is the requirement that the user pre-specify a range of critical
spatial and temporal distances of interest, i.e. a priori knowl-
edge must be used to decide what distances are considered
“close” versus “far”, in space and time. One of the motivat-
ing goals of our work is to relax this assumption while not
sacrificing statistical power. We take a new look at the as-
sumptions underlying these tests, showing how each can be
understood as testing a particular null hypothesis, namely that
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FIG. 1: Left: there is a strong correlation between the time series of violent crimes and calls to 311, Chicago’s non-emergency
services number, about vacant/abandoned buildings, due at least in part to common seasonal trends. Right: calls about

vacant/abandoned buildings and violent crimes were aggregated to the census tract level (approximately 4,000 people) and
plotted against each other. There is again a strong correlation.

the probability distributions over interpoint distances and in-
terpoint time intervals are independent.

In this framework, we focus on the development of a set of
new space-time interaction tests, based on the Hilbert Schmidt
Independence Criterion (HSIC)15, a kernel-based test statistic,
for testing for independence between probability distributions.
While HSIC was originally proposed for independent, identi-
cally distributed (iid) data, we motivate its use with spatiotem-
poral point processes, considering various alternative specifi-
cations. There has been limited development of space-time
interaction tests for the bivariate case of measuring the space-
time interaction between two spatiotemporal point processes.
We extend the HSIC-based criterion to the bivariate case, and
show interesting connections with the Mantel test along with a
possible fix for some of the known issues with this test, using
kernels.

We assess the power of our new test experimentally in a
simulated dataset, where it compares favorably to existing
methods for testing for space-time interaction, without requir-
ing precise specification of various parameters. We also apply
our new test to the application domain of predictive polic-
ing, using a data-driven approach to discover types of 911
calls which have significant forward-in-time space-time inter-
action with shootings, using geocoded, date-stamped crime
data from the City of Chicago. This statistical formalization
of leading indicators is a novel contribution to the criminol-
ogy literature. As a final example, we address the well-known
“broken windows” theory, looking for bivariate, forward-in-
time associations between types of calls to Chicago’s 311
(non-emergency services) number, indicative of low-level dis-
order, and violent and non-violent crime types.

A. Related Work

A number of different criminology methods and theories
touch on the central focus of this paper, that of finding signif-
icant space-time interactions between crime incidents. From
a spatial point of view, environmental criminology focuses on
the criminal characteristics of places6. A related theory with
an important spatial component is that of crime attractors, typ-
ified by the “broken windows” theory36, that low-level dis-
order and crime act as signals which attract more, and more
serious criminal behavior. The literature on crime hot-spots
focuses on the fact that crimes tend to cluster spatially5. From
a time series perspective, there has been much work on crime
trends4. Recently, various advanced spatiotemporal models
have been fit to crime data:27 used self-exciting point process
models, developed for earthquake modeling, for burglaries.33

modeled violent crime using sophisticated semiparametric
Bayesian techniques.10 used nonparametric Bayesian tech-
niques to segment crime data spatially. Explicitly addressing
space-time interaction,17 compared the “spatiotemporal sig-
natures” of robbery, burglary, and assault. Previous work has
evaluated the use of “leading indicator” crimes as predictors
of violent crimes and property crimes using regression-based
analyses with crimes aggregated into discrete bins in space
and time7 and spatial scan statistics28. There has been some
work with univariate space-time tests to investigate the spatio-
temporal dynamics of crime, including hot spots17 and “near
repeats”35.

Space-time interaction tests are most widely used in the
epidemiological literature, but most examples are univari-
ate, focusing on the question of, e.g. the etiology of child-
hood leukemia1. The most similar work to this one appeared
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in ecology:24 investigated the space-time interaction between
spruce budworms and forest fires using point process meth-
ods.

B. Contributions

The space-time interaction test and our bivariate and
forward-in-time extensions are novel tests based on the
Hilbert-Schmidt Independence Criterion. The framework we
propose for space-time interaction testing gives a new per-
spective on the classical Mantel test, provides an alternative
to classical tests for space-time interaction, and shows how
kernel-embedding techniques can be used with spatiotempo-
ral point processes. In terms of applications, we are not aware
of any previous work in the criminology literature that has
focused on identifying leading indicators of crime through bi-
variate space-time interaction tests.

II. THEORETICAL DEVELOPMENT

A. Background: Classical Tests for Space-Time Interaction

LetP = {(si, ti), i = 1, . . . , n} be a realization of a spatiotem-
poral point process with two spatial dimensions (si ∈ R

2) and
a time dimension. We can think of si ∈ A for a spatial region
A and ti ∈ T for a time window T . An illustration is shown in
Figure 2.

We start by stating the Knox test20. Given P, we create a
two-by-two contingency table as follows: pick a threshold dis-
tance for “near in space” s0 and a threshold time interval for
“near in time” t0. Now, consider every pair of distinct points
s, s′ ∈ P. Let ds(p, p′) measure the Euclidean distance be-
tween p and p′:

√
(x − x′)2 + (y − y′)2 and dt(p, p′) measure

the time interval: |t − t′|. Then, we can fill in the table by ask-
ing for each pair of points whether ds(p, p′) ≤ s0 and whether
dt(p, p′) ≤ t0:

near in space far in space
near in time X n1

far in time n2 N − (X + n1 + n2)

If there are N = n(n − 1)/2 pairs of points, the test statistic
is given by the difference between the number of pairs that we
observe to be near in both time and space, X, and the num-
ber of pairs that we would expect to be near in both time and
space if time and space are independent: N X+n1

N
X+n2

N . Together
this is: X − 1

N (X + n1)(X + n2). Since the null hypothesis is
that space and time are independent, we can empirically find
the distribution of X under the null by randomly permuting
the time labels and recomputing the test statistic. Notice that
X + n1, the number of points that are close in time, is un-
changed if the time labels are permuted. The same is true of
X + n2. This simplifies our calculations, and we need only
consider the distribution of the test statistic X under the null.
Various asymptotic approximations to the null distribution are
discussed in22.

The Knox test is very straightforward, but it clearly has lim-
itations. Correctly specifying the spatial and temporal ranges
is not always easy, and considering a range of values leads to

close in space intermediate far in space
close in time 1 1 1
intermediate 1 5 1
far in time 1 1 1

TABLE I: In this simple example, space-time interaction
occurs at an intermediate distance in space and time.

problems of multiple hypothesis testing. As a toy example,
Figure 3 shows how the power of the Knox test depends crit-
ically on the choice of cutoffs. We generated synthetic data
from a point process with space-time clustering, using the
setup discussed in Section III.A, and varied the spatial cut-
off for the Knox test from 0 to 0.5. When the spatial cutoff is
equal to about 0.1, the test correctly rejects the null in almost
every case (α is fixed at 0.05). But for smaller and larger val-
ues of s0, the power decreases. For further intuition, consider
the illustrative dataset in Table I. If the cutoff is set such that
the close and intermediate categories (in space and time) are
collapsed, the Knox test will fail to reject the null hypothe-
sis of no space-time interaction. Similarly, if the cutoff is set
such that intermediate and far categories (in space and time)
the Knox test will fail to reject. But there is evidently space-
time interaction, at an intermediate distance.

Another concern is that the Knox test is based solely on dis-
tances between points, ignoring any other relevant features,
like location in space and time. When Knox proposed his test,
he was quite explicit, stating that all of the information re-
quired for a test of space-interaction is found in the interpoint
time and space distances20. But his claim ignores the possi-
bility of other types of inhomogeneities, as was pointed out at
the time3.

Next, we describe the Mantel test25. Given P, create
an n × n spatial distance matrix DS with entries given by
ds(pi, p j) for row i and column j and an n × n temporal dis-
tance matrix DT with entries given by dt(pi, p j). As with the
Knox test, we wish to ask whether space and time, now repre-
sented by two matrices, are independent. We string out the
entries above the diagonal of each matrix as a vector with
n(n − 1)/2 entries, and calculate the Pearson correlation be-
tween these vectors. Notice, however, that the usual signifi-
cance test for Pearson’s correlation is not valid, because the
observations are not independent. To derive the null distri-
bution, we again turn to randomization testing, this time ap-
plying a given permutation to the rows and columns of one
of the matrices, so as to preserve the dependence structure
among the entries. We are mostly concerned about shorter
time and spatial distances, but as described above, the Mantel
test could be significant due to (spurious) longer range fea-
tures. In25, Mantel proposed the reciprocal transformation
for both spatial and temporal distances x, forming the matri-
ces of fs(ds(pi, p j)) and ft(dt(pi, p j)) where fs(x) = 1

x+εs
and

ft(x) = 1
x+εt

. The Mantel test is essentially a linear test of de-
pendence, so we expect it to fail under the same conditions in
which Pearson correlation and linear regression fails.

The Diggle et al. test9 has a similar flavor to the Knox
test, but rather than a single threshold value, it requires the
specification of a range of values. First, we define Ripley’s
K function (also called the reduced second moment measure)

New space/time interaction tests for spatiotemporal point processes 3
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FIG. 2: Two different “infectious” Poisson cluster processes with parents shown as open circles and children shown as filled
circles. Children are displaced from parents in space and time by iid draws from N(0, σ). The top row displays the case for
σ = 0.05, the bottom row for σ = 0.2. Visual inspection reveals space-time interaction in the first row while the second row is

more ambiguous. Tests for space-time interaction correctly reject the null hypothesis (of no space-time interaction) in both
cases, with p ≤ 0.01.

for a single spatial point process as the following: K(s) =
1
λS

E[# of events occurring within a distance s of an arbitrary event]
where λS is the intensity of the point process. An estimate is
given by λ̂S = N/A for N points in a spatial region with area
A.

Given spatial point locations S ∈ Rn×2 in a region with area
A, the simplest way of estimating K̂(s) is by averaging:

K̂(s) =
1

λ̂S

n∑
i=1

1
n − 1

∑
i, j

I(ds(pi, p j) ≤ s) (1)

=
A

n(n − 1)

∑
i

∑
i, j

I(ds(pi, p j) ≤ s) (2)

This estimator assumes a constant first order intensity and
since we are taking a ratio of expectations, we also assume
the following regularity conditions: [TO BE FIXED]. This
test also ignores the issue of edge corrections: at the bound-
ary of the spatial or temporal region, “missing” observations

bias the estimate. This becomes an issue for small n or s large
compared to A. Corrections are given in29. The new test that
we propose will not have this shortcoming.

Ripley’s K function has natural extensions to the purely
temporal K(t) and space-time K(s, t) cases, with similar es-
timators to the above. We remark that λ̂S T K̂(s0, t0) is equal
to the entry in the upper-left hand corner of the contingency
table used in Knox’s test, and similarly λ̂S K̂(s0) and λ̂T K̂(t0)
are equal to the top row and left column, respectively.

Diggle et al. define residual space-time interaction at spatial
scale s and time t as:

D(s, t) = K(s, t) − K(s)K(t)

Using this function, Diggle et al. define a test statistic calcu-
lated over a grid of pre-specified spatial distances s1, . . . , sk
and time intervals t1, . . . , tl:

R =
∑

si

∑
t j

D(si, t j)

New space/time interaction tests for spatiotemporal point processes 4
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FIG. 3: We generated synthetic data from a cluster point process with children points displaced from their parents a distance
∼ N(0, σ = .05) in space and time. For α = 0.05, the Knox test correctly rejects the null when the spatial cutoff is well chosen,

but as the cutoff decreases or increases, the power decreases. The temporal cutoff is fixed at 0.1 in every case. This
demonstrates that the power of the Knox test depends on correctly specifying cutoffs for “close in space” and “close in time.”
Similarly, the Mantel test’s power depends on correctly specifying a transformation from distance to “similarity.” In Mantel’s
original formulation, distances x were transformed as f (x) = 1

x+ε
for some ε. On the right, the Mantel test correctly rejects the

null almost all the time when ε is well chosen, but as ε increases or decreases the power decreases. The same transformation
was used for space and time.

Under the null hypothesis of no space-time interaction, the
expectation of R should be 0. The intuition is the same as for
the previous tests: K(s, t) tells us how many points we expect
to see within a distance s and time t of an arbitrary point. As
in the previous tests, permutation testing by shuffling the time
labels is used to obtain the null distribution of R. The Diggle
et al. test is meant to address the issue of multiple hypothesis
testing that arises when the Mantel or Knox test are applied
repeatedly. However, it may lose power due to the fact that it is
measuring a statistic of interest over multiple thresholds: this
statistic may be positive or negative at different thresholds,
and thus may cancel out, or it may be zero at many thresholds
and thus go undetected.

This completes our presentation of classical space-time in-
teraction tests. Note that we have not provided an exhaustive
review. Other tests for point processes include Jacquez’s near-
est neighbor based method18. Various improvements to the
Knox test have been proposed in2,21. There is also a parallel
literature in geostatistics and Gaussian processes on tests for
the “separability” of space-time covariance functions13,14.

Notice the commonalities among the tests: each is a hy-
pothesis test with the same null hypothesis, that the interpoint
spatial and temporal distributions are independent. To see this,
note that the contingency table in the Knox test is used to ask
whether binary indicator variables for pairs of points (near in
space, near in time) are independent. The Mantel test uses

Pearson correlation to test whether the interpoint space and
interpoint time distributions are independent. Diggle et al.’s
test asks whether there is a difference between the cumulative
distribution of how many points are near in space and near
in time and the product of the marginal distributions of how
many points are near in space and how many points are near
in time.

B. Extending the Classical Tests to Bivariate Space-Time
Interaction

Given P1 = {(s1
i , t

1
i ), i = 1, . . . , n1} and P2 = {(s2

i , t
2
i ), i =

1, . . . , n2}, we wish to know whether there is significant space-
time interaction between P1 and P2. The null hypothesis is
that there is no space-time interaction between the two pro-
cesses. Notice that we are not interested in whether there is
purely spatial dependence between P1 and P2: any two pro-
cesses associated with, for example, an underlying population
density will be spatially correlated. Similarly, we are not in-
terested in purely temporal dependence between the two pro-
cesses, e.g. due to seasonal trends. Instead, we wish to test
whether seeing points of type 1 at a certain location in space
and time makes it more or less likely that we will see points of
type 2 nearby in space and time, once we have controlled for
separable spatial and temporal correlations between P1 and

New space/time interaction tests for spatiotemporal point processes 5



P2.
The Mantel, Knox, and Diggle et al. tests each focus on

pairs of points. For the bivariate extension for each, we sim-
ply consider all n1 · n2 cross-pairs of points. For the Knox test
we create the same contingency table where each entry counts
the number of cross-pairs that are near in time and near in
space, the number of cross-pairs that are near in time and far
in space, etc. For randomization testing, it is sufficient to per-
mute the time labels of only one of the point processes. For
the Mantel test, we create an n1×n2 spatial cross-distance ma-
trix and an n1×n2 temporal cross-distance matrix, and the test
statistic is the same. The bivariate version of the Mantel test
was explored in19. The Diggle et al. extension is straightfor-
ward as well24.

C. Background: Kernel Embedding of Distributions

We start with a presentation of the use of kernel embeddings
of probability distributions for measuring distances between
samples, focusing on the Hilbert-Schmidt Independence Cri-
terion (HSIC)15. The motivation behind HSIC is as follows:
given a joint distribution (x, y) ∼ (P,Q), we test the null hy-
pothesis that P y Q. If P and Q happened to be jointly Gaus-
sian, then Pearson correlation could be used to test this hy-
pothesis, or equivalently one can ask whether Cov(P,Q) = 0.
The obvious limitation of this approach is that it can only cap-
ture linear dependencies. HSIC can capture non-linear depen-
dencies, while still using a linear statistic (covariance), by first
embedding P and Q into a Reproducing Kernel Hilbert Space
(RKHS). After representing x ∼ P and y ∼ Q as infinite di-
mensional vectors in the feature space representation of P and
Q, we can define and measure the length of a covariance op-
erator ΣPQ in Hilbert space. At a purely mechanical level, this
is an application of the “kernel trick,” where dot products in
the original space (the sample estimate of covariance is the
dot product between two centered vectors of observations) are
replaced by Mercer kernels. But RKHS theory takes this be-
yond merely a trick to give us statistical guarantees, and as
we shall see, the use of kernels sheds new light on classical
statistical tests for space-time interaction.

We now state HSIC. Assume we have an RKHS HP with
a reproducing kernel k, where HP is the space of functions
f : Rd → R and k is a positive semidefinite function over
pairs of elements in Rd. For concreteness, consider the Gaus-

sian Radial Basis Function (RBF) kernel: k(x, y) = e−
‖x−y‖22

2σ2 .
Given a function f ∈ HP and an element x ∈ Rd, the Riesz
representation theorem states that we can evaluate f (x) using
the feature mapping: f (x) = 〈φ(x), f 〉HP . Now, we extend this
to the case of expectations over elements x ∼ P, defining a
“mean-embedding” element µp ∈ HP as follows:

Ex f (x) = Ex〈φ(x), f 〉HP = 〈Exφ(x), f 〉HP = 〈µp, f 〉HP

We need to establish under what conditions we can move the
expectation inside the inner product; under these conditions,
µp exists. Lemma 3 in16 states:

Lemma 1. If k is measurable and Ex
√

k(x, x) < ∞ then µp
exists.

Analogously, we define µq for a Hilbert space HQ, and µpq
for the Hilbert space formed by the tensor product of HP ⊗
HQ. Just as Cov(P,Q) = E[XY]− E[X]E[Y] we can define an
operator ΣPQ = µpq − µpµq where:

〈 f ,ΣPQg〉 = Exy[ f (x)g(y)]−Ex[ f (x)]Ey[g(y)] = Cov( f (P), g(Q))

Recall that our goal is to test whether X y Y . For f and
g drawn from appropriately rich function classes, it is easy to
see that: X y Y if and only if sup f ,g Cov( f (X), g(Y)) = 0

As a stylized example, consider X ∼ N(0, 1) and Y = X2. X
and Y are clearly dependent, but a linear test for independence
would fail to discover this, since Cov(X,Y) = 0. A simple
transformation of variables with g(y) =

√
y fixes the problem.

If we require that f ∈ HX, g ∈ HY, ‖ f ‖ ≤ 1, ‖g‖ ≤ 1, then
the supremum of this statistic can be found in closed form
(i.e. without any explicit optimization):

sup
f ,g

Cov( f (X), g(Y)) (3)

= sup
f ,g
〈 f ,ΣPQg〉 (4)

= sup
f ,g
〈 f ⊗ g, µpq − µpµq〉 (5)

= 〈
µpq − µpµq

‖µpq − µpµq‖
, µpq − µpµq〉 (6)

= ‖ΣPQ‖HS (7)

Step 6 follows because in a Hilbert Space (as in Euclidean
space), given a vector u, the unit vector v with largest inner
product 〈v, u〉 is v = u

‖u‖ . If we further choose “universal” or
“characteristic” kernels for HP and HQ than we can guaran-
tee that P y Q if and only ‖ΣPQ‖HS = 032. The derivation
presented above follows that of the closely related Maximum
Mean Discrepancy test statistic15. An alternative derivation
is to simply consider the Hilbert-Schmidt norm of ΣPQ, and
prove that this norm is 0 if and only if P y Q (for appropriate
choice of kernels). This explains why it is called the Hilbert-
Schmidt Independence Criterion16. We switch to the squared
norm so that we can state a (biased) estimator:

‖ΣPQ‖
2
HS = 〈µpq − µpµq, µpq − µpµq〉 (8)

= ‖µpq‖
2 − 2〈µpq, µpµq〉 + ‖µpµq‖

2 (9)
= Ex,yEx′,y′k(x, x′)`(y, y′) (10)
− 2Ex,yEx′Ey′k(x, x′)`(y, y′) (11)
+ ExEyEx′Ey′k(x, x′)`(y, y′) (12)

=
1
n2

∑
i, j

k(xi, x j)`(yi, y j) (13)

−
2
n3

∑
i, j,r

k(xi, x j)`(yi, yr) (14)

+
1
n4

∑
i, j,r,s

k(xi, x j)`(yr, ys) (15)

= ĤSIC (16)

A particularly compact expression for this estimator, using
“centered” matrices, is available15: 1

n2 tr(K̃L̃). We present the
details here because they will be useful later in understand-
ing connections with the Mantel test. If K is the Gram matrix
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with entries ki j = k(xi, x j) and L is the Gram matrix with en-
tries `i j = `(yi, y j), let K̃ be the centered Gram matrix where
K̃i j = 〈φ(xi) − µp, φ(x j) − µp〉 so K̃ = K − 1

n 11T K − 1
n K11T +

1
n2 11T K11T = HKH where H = I − 1

n 11T . Now, we can
expand (using trace rotation and the fact that HH = H):

1
n2 tr(K̃L̃) =

1
n2 tr (HKH HLH) (17)

= tr(HKH L) (18)

=
1
n2 tr(KL) −

1
n3 tr(11T KL) −

1
n3 tr(K11T L)

(19)

+
1
n4 tr(11T K11T L) (20)

=
1
n2 tr(KL) −

2
n3 tr(11T KL) +

1
n4 tr(11T K11T L)

(21)

=
1
n2

∑
i, j

k(xi, x j)`(yi, y j) −
2
n3

∑
i, j,r

k(xi, x j)`(yi, yr)

(22)

+
1
n4

∑
i, j,r,s

k(xi, x j)`(yr, ys) (23)

= ĤSIC (24)

The simplest way to derive the distribution of HSIC under
the null hypothesis that X y Y is by randomization testing:
given pairs (xi, yi) we shuffle the y’s and recompute ĤSIC. An
asymptotic test based on the Gamma distribution is stated in15,
and another test based on the eigenvalues of the kernel matri-
ces is derived in37. We also note that15 gives an unbiased test
statistic, based on a U-statistics. As previously stated, for a
universal kernel, P y Q if and only if HS IC = 0. This means
that if P and Q have any kind of dependence, then HSIC will
not be 0, but if HSIC is 0, then P y Q.

D. Tests for Space-Time Interaction with Kernel Embeddings

As an intermediate step towards using kernel embeddings
to test for space-time interaction, and because it sheds light
on the classical version of the Mantel test, we define a ker-
nelized version of the Mantel test. The Mantel test was de-
scribed in Section II.A. We briefly restate it in a more general
form, following23. The Mantel test measures the correlation
between a pair of dissimilarity (distance) matrices. Given a
set of objects P, and two different ways of measuring the dis-
similarity between these objects, the null hypothesis is that the
two different types of measurements are independent. Given,
e.g. two n×n matrices of distances K and L where k(i, j) gives
the Euclidean distance between objects i and j and `(i, j) gives
some other dissimilarity measure, the Mantel test statistic is∑

i, j k(i, j)`(i, j). Interestingly, this is the first term in the es-
timator for HSIC, as shown in Equation 15. While the Man-
tel test is usually presented in terms of distance matrices, it
is valid for similarity matrices as well. We propose consid-
ering a kernelized version of the Mantel test. Given objects
P = (p1, . . . , pn) and two kernels k and `, we construct the
Gram matrices K and L and ask, as in the Mantel test, whether

the two kernels are measuring independent properties of the
objects of P.

Once we have Gram matrices, we proceed exactly as with
the Mantel test, defining the test statistic T =

∑
i, j k(i, j)`(i, j),

and obtaining significance levels by randomization testing.
We call this test the “kernelized Mantel test” and to our
knowledge it has not been explicitly considered in the liter-
ature, but in fact, the reciprocal transformation considered
by Mantel25 ( f (s) = 1

s+ε ) is an example of a Mercer kernel:
k(x, x′) = 1

‖x−x′‖2+ε
26 (as cited in31).

With this as background, we are ready to define a new test
for space-time interaction based on kernel embeddings.

In the spirit of the classical tests described in Section II.A,
an alteriatve approach to using HSIC would be to define new
distributions P = {ds(i, j) : i , j} for the Euclidean distances
between pairs of points and Q = {dt(i, j) : i , j} for the
interpoint time intervals, and apply HSIC as a black box to
test whether the distributions P and Q are independent. This
is not an attractive option computationally, as it leads to O(n4)
computations because HSIC considers pairs of observations,
and in this case observations are themselves pairs of points.

We present two alternative derivations of the same test.
First, let us more closely inspect our kernelized Mantel test,
and in particular how it differs from the HSIC test statistic.
The last term of the HSIC estimator, which estimates ‖µpµq‖

2,
is unchanged by randomization, so the key difference is the
cross-term, 〈µpµq, µpq〉. Although it was not presented this
way, we could have defined the covariance operator as:

ΣPQ = Exy[(φ(x) − µp) ⊗ (ψ(y) − µq)]

Thus, we see that the cross-term in ‖ΣPQ‖
2
HS arises because

the feature vectors φ(x) and ψ(y) are centered before being
multiplied together (by analogy, we can write: Cov(P,Q) =

E[(P−E[P])(Q−E[Q])]). Returning to the Mantel test, this is
the critical difference—the Mantel test measures dependence
by calculating the inner product between two matrices treated
as vectors, where these vectors are centered by subtracting the
mean of their entries, that is, subtracting the mean of empiri-
cal distribution over distances But this is not equivalent to the
centering done by HSIC: φ̃(x) = φ(x) − µp centers the fea-
ture embedding so that it has mean 0. From this, the centered
Gram matrices K̃ = HKH and L̃ = HLH where H = I − 1

n 11T

is calculated, and then the covariance is measured as 1
n2 tr K̃L̃,

as proved in the previous section.
This suggests a simple fix for the Mantel test, which can

even be applied to the classic version. Given similarity, dis-
similarity, or Gram matrices K and L, calculate K̃ and L̃ and
then apply the Mantel test:

∑
i, j K̃i jL̃i j. Since this is propor-

tional to 1
n2 tr(K̃L̃), our final “Kernelized Space-Time” (KST)

test takes the same form as HSIC.
We now show an alternative derivation of this test, start-

ing with Hilbert spaces. Given a probability distribution
over points in space A = {(s, t)}, with s ∈ R2 and t ∈ R
and kernels k (for RKHS HK ) and ` (for RKHS HL). Let
k(a, ·) = k(s, ·) = φ(s) and `(a, ·) = `(t, ·) = ψ(t), so that k
embeds the spatial coordinates of A with feature map φ(s),
ignoring the temporal coordinates, and ` embeds the temporal
coordinates of A with feature map ψ(t), ignoring the spatial co-
ordinates. The null hypothesis we wish to test is that for a ran-
dom a ∼ A, φ(a) y ψ(a), i.e. space and time are independent.
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We proceed in feature space to test whether P(φ(p), ψ(p)) =

P(φ(p))P(ψ(p)). For arbitrary functions f ∈ HX and g ∈ HY,
we wish to test whether sup f ,g Cova(〈 f , φ(a)〉, 〈g, ψ(q)〉) = 0.
This expression is equal to Equation 8, so we reach the same
conclusion, that we need to check whether ‖ΣPQ‖HS = 0,
which can be done using ĤSIC as a test statistic. Note that
if we want to stay as close as possible to classical tests for
space-time interaction, we could insist that k and ` be station-
ary so that k(s, s′) = k(‖s− s′‖) and `(t, t′) = `(|t− t′|), but this
is not necessary.

Let us recap. For intuition, let k and ` be RBF kernels (with
the same bandwidth for convenience): k(a, a′) = e−‖s−s′‖22 and
`(a, a′) = e−|t−t′ |2 . Given the space-time coordinates of a set
of points, we wish to test whether there is space-time interac-
tion. Using kernels, we represent these points through their
similarity to every other point, i.e. we represent these points
using φ(a) = k(a, ·)—a measure of the spatial distance be-
tween a and any other point and by ψ(a) = `(a, ·)—a mea-
sure of the time interval between a and every other point.
Given these representations, we proceed just as in the classi-
cal tests, asking whether the distribution over spatial distances
P(φ(a)) is independent of the distribution over time intervals
P(ψ(a)). Unlike the standard HSIC setting, we are already
working in feature space, but the test is still valid, and it still
provides the same guarantees, namely space and time (as rep-
resented by the kernels we picked, and provided the kernels
are universal or characteristic) are independent if and only if
HS IC(φ(A), ψ(A)) = 0.

E. Extensions for Bivariate Space/Time Interactions

For the application domain we consider, we are interested in
determining whether there is space-time interaction between
two types of point processes.

As previously discussed in Section II.B, the extension of
the classical tests to this bivariate case is straightforward. Let
P1 and P2 denote two different point processes, with the same
number of observations n for convenience. Call pairs of points
(p1, p2) cross-pairs of points. For the Knox test, the contin-
gency table simply counts the number of cross-pairs of points
that are close vs. far. For the Mantel test, we consider only the
submatrices of the original distances matrices corresponding
to these cross-pairs. (See below.)

In Hilbert space, we can develop a similar extension, and
again we can motivate it in a few ways.

Motivation 1. If we take as our starting point the Man-
tel test, then we have (distance, similarity, or Gram) matri-
ces K and L. Let the submatrix K12 denote the matrix with
entries K12

i j = k(x1
i , x

2
j ) where x1

i is a point of type 1 and
x2

j is a point of type 2. We define L12 in the same way.
Now, the Mantel test statistic would be

∑
i j K12

i j L12
i j . As we

argued previously, this test statistic is not appropriately cen-
tered, and it is thus equivalent to taking an uncentered co-
variance. Moving to feature space, we can define a centered
version of K̃12

i j = 〈φ(x1
i )−µ1

p, φ(x2
j )−µ

2
p〉 where µ1

p = Ex1φ(x1)
and µ2

p = Ex2φ(x2). Notice that these entries are not the
same as the equivalent cross-pair entries in the K̃ matrix pre-
viously defined because the centering is by µ1

p for points of
type 1 and µ2

p for points of type 2. We define L12 analo-

gously, and thus propose as our kernel-based test statistic:
K̂ST12 =

∑
i j K̃12L̃12. This can be written compactly in matrix

form as tr(K12HL12H) where H = I − 1
n 11T .

Motivation 2. If we take as our starting point HSIC, we
can define Σ1

XY = µ1
pq − µ

1
pµ

1
q and Σ2

XY = µ2
pq − µ

2
pµ

2
q. Before,

our test statistic was the Hilbert-Schmidt norm of the oper-
ator ΣXY . Now, we propose taking the trace of the product
Σ1

XY (Σ2
XY )T = 〈µ1

pq − µ
1
pµ

1
q, µ

2
pq − µ

2
pµ

2
q〉. The idea is that Σ1

XY
is the Hilbert space operator representing the space-time in-
teraction of points of type 1. When we evaluate 〈 f ,Σ1

XYg〉 for
some choice f ⊗g we are calculating Cov( f (X1), g(Y1)). Now,
rather than finding the supremum of this covariance (equiva-
lently, calculating the Hilbert-Schmidt norm), we check it at a
particular choice of f ⊗ g: if f ⊗ g = Σ2

XY , then

〈 f ,Σ1
XYg〉 = Σ1

XY (Σ2
XY )T

. In this way, we are evaluating the covariance in feature space
by only considering cross-pairs of points. To see that this is
the case, and that it gives the same test statistic as above, we
expand using expectations:

Σ1
XY (Σ2

XY )T = 〈µ1
pq − µ

1
pµ

1
q, µ

2
pq − µ

2
pµ

2
q〉 (25)

= Ex1,y1 Ex2,y2 [k(x1, x2)`(y1, y2)] (26)

− Ex1,y1 [Ex2 k(x1, x2)Ey2`(y1, y2)] − Ex2y2 [Ex1 k(x1, x2)Ey1`(y1, y2)]
(27)

+ Ex1 Ex2 k(x1, x2)Ey1 Ey2`(y1, y2) (28)

Notice that throughout the kernels k and ` are only applied to
cross-pairs of points. An estimator is:

K̂ST12 =
1
n2

∑
i, j

k(x1
i , x

2
j )`(y

1
i , y

2
j )−

1
n3

∑
i, j,r

k(x1
i , x

2
j )`(y

1
i , y

2
r )−

1
n3

∑
i, j,q

k(x1
i , x

2
j )`(y

1
q, y

2
j )+

1
n4

∑
i, j,q,r

k(x1
i , x

2
j )`(y

1
q, y

2
r )

As with the original formulation of HSIC, some algebra re-
mains to verify that this is indeed equal to 1

n2 tr(K̃12L̃12), the
KST12 test statistic we proposed earlier.

F. Forward in Time Tests for Space-Time Interaction

In the previous section we showed how to measure space-
time interaction between two types of points. We propose one
further extension: we wish to measure space-time interaction
in the bivariate case, where we insist that points of type 2 oc-
cur after points of type 1. We refer to this as bivariate, forward
in time case KST1→2. As in the previous section, the extension
follows by restricting the test statistic to consider only pairs of
points (t1

i , t
2
j ) for which t1

j < t2
j . We can immediately modify

our test statistic:

̂KST1→2 =
1
N

∑
i, j:y1

i <y2
j

k(x1
i , x

2
j )`(y

1
i , y

2
j )

−
1

nN

∑
i, j,r:y1

i <y2
r

k(x1
i , x

2
j )`(y

1
i , y

2
r ) −

1
nN

∑
i, j,q:yq<y j

k(x1
i , x

2
j )`(y

1
q, y

2
j )

+
1

n2N

∑
i, j,q,r:y1

q<y2
r

k(x1
i , x

2
j )`(y

1
q, y

2
r )

where N =
∑

i, j I(y1
i < y2

j ).
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III. EXPERIMENTAL EVALUATION

Below, we describe three experimental evaluations of our
new space-time test. First, using synthetic data, we compare
the performance of our test as compared to the classical tests.
Second, we show the applicability of our methods to the so-
called “broken windows” hypothesis: using publicly available
data on calls for service and crime incidents, we ask whether
and which types of citizen complaints are correlated with vi-
olent crime. Finally, we turn our attention to the problem of
predictive policing and evaluate whether our test can be used
as a feature selection method to determine which leading indi-
cators of 911 call types are predictive of shootings and homi-
cides. We argue that the correlations uncovered by our model
are more useful and interpretable than those discovered by
standard sparse regression methods, while still giving compa-
rable performance on the difficult task of predicting incidents
of shootings and homicides across Chicago neighborhoods.

A. Synthetic Data

Our power analysis, inspired by the one in9 uses the fol-
lowing setup for a Poisson cluster process: parent locations
(x, y, t) are sampled on the unit cube. The number of chil-
dren for each parent is drawn iid ∼ Poisson(5). The location
of each child is generated as a random displacement from the
parent’s location, in space and time, where each coordinate’s
offset is independently sampled from N(0, σ). This induces
space-time interaction, and as σ increases, the signal of this
interaction becomes swamped by noise. Figure 2 shows two
examples, one with σ = 0.025 and the other with σ = 0.2. We
consider 0 < σ ≤ .4.

We will consider the same set of tuning parameters ∆ =

{0.05, 0.10, . . . , 0.25} for each test. For the Knox test, the spa-
tial cutoff varies over ∆ while the temporal cutoff is fixed at
0.1. For the Mantel test, we use the transformation consid-
ered earlier: 1

x+ε
for ε ∈ ∆. For the Diggle et al. test, we

follow9 and use a grid of side length varying over ∆ for the
points at which the K function is evaluated. The grid always
has the same coarseness 0.01. For KST, the bandwidth σ of
the RBF kernel varies over ∆. For each method, each value of
∆, and each value of σ, we draw 500 random point patterns
and obtain p-values using randomization testing. The power
is shown in Figure 4 as the fraction of simulations which cor-
rectly rejected the null hypothesis of independence between
space and time at α = 5%. The four methods are com-
pared in Figure 5. For each method, the relevant parameter
that was chosen was the parameter with the highest power for
σ = 0.15. When σ is small, all methods have equally high
power, but as σ increases, the power decreases at different
rates. The KST method we proposed has the highest power
for σ > 0.1.

B. The “Broken Windows” Theory

As introduced in an influential magazine article by Wil-
son and Kelling36, the “broken windows” theory suggests that
low-level disorder, such as broken windows, leads to more
low-level disorder (e.g. property crime), and eventually more

serious, violent crime. There has been much research and de-
bate about this theory. See, for example30. As an exploratory
example, we demonstrate the use of our space-time test to-
wards addressing this controversial hypothesis. We obtained
geocoded, date-stamped non-emergency calls for service to
Chicago’s 311 number and geocoded, date-stamped criminal
offense reports from January 2010 through December 2012.
Continuously updated versions of both datasets are publicly
available at Chicago’s data portal, data.cityofchicago.org.

We used KST1→2, the bivariate, forward in time version of
our space-time test to check whether any types of calls to 311
exhibit space-time interaction with crime in the future. The
types of 311 calls considered were: abandoned vehicle, al-
ley light out, garbage cart–related, graffiti, pot hole, rodent
complaint, sanitation, street lights out, tree trim / tree debris,
and vacant/abandoned building. We aggregated the following
types of crimes into a single category, violent crime: homi-
cide, criminal sexual assault, robbery, and aggravated assault
/ battery. We aggregated all other crime types into a category
we call non-violent crime. With three years of data, our sam-
ple sizes range from about 30,000 (vacant/abandoned build-
ing reports) to more than 750,000 (non-violent crimes). There
were almost 300,000 violent crimes reported. Our implemen-
tation of KST requires time O(n3) in the number of points
n per permutation, so we used independent random thinning
(randomly deleting points with a fixed probability, equivalent
to taking a random subset of the points without replacement)
to speed up computation times

Most statistics on spatiotemporal point patterns are invari-
ant to independent random thinning. We performed sensitivity
analyses to ensure that our estimates were robust to the size of
the subsample chosen.

We used sample sizes n = 50,000 for each point pattern
and randomization testing with 1000 replications, to obtain p-
values for each pair of 311 call type and violent or non-violent
crime (20 hypotheses in total), as shown in Table II. No types
of call to 311 had a significant p-value, meaning that after
controlling for spatial and temporal variation there is no (sta-
tistically significant) correlation between the incidence of 311
calls and either non-violent or violent crime in Chicago. A
much deeper analysis would of course be necessary to provide
a rigorous of assessment of the broken windows theory using
these data. One immediate objection to this formulation is
that 311 data is evidence of disorder as perceived by engaged
citizens, rather than an objective measure of disorder, or disor-
der as perceived by criminals. And of course, correlation does
not imply causation (although statistical independence usually
rules out causation!)

C. Crime Data from the City of Chicago

Based on conversations with City of Chicago officials, we
focused on the following question: which types of calls to
911 exhibit space-time interaction with homicides and aggra-
vated battery with a handgun (hereinafter, “shootings”). The
ultimate goal is to enable the Chicago Police Department to
respond more pro-actively to these leading indicators so as to
prevent shootings. We used a dataset provided by the Chicago
Police Department of geocoded, date and time-stamped calls
to 911 and another dataset of crime incident reports. Data
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FIG. 4: We compare the Knox, Mantel, Diggle et al., and newly-proposed KST tests on synthetic data. On the y-axis, we show
the power as the fraction of simulations in which the test correctly rejected the null hypothesis of independence between space
and time for α = 5%. In the simulations, a cluster point process is generated where children points are offset from a parent a

distance ∼ N(0, σ) in each dimension. As σ grows, the problem becomes harder and each method’s power decreases. For each
method, we vary a tuning parameter: for Knox we vary the definition of “near” in space, for Mantel we vary the ε in the
reciprocal transformation, for Diggle et al. we vary the grid size, and for KST we vary the bandwidth of the RBF kernel.
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well, but as σ increases, we see differences. The method we
propose has the highest power for σ ≥ 0.1.

were from 2007 through the first half of 2010. There were
just under 9 million calls for service (911 calls, plus calls to
the dispatcher made by police for a variety of reasons) and
9,087 homicides and shootings reported in this time period.
There were about 275different types of calls to 911.

As in the previous section, we considered each separate
type of 911 call as one point pattern and the point pattern of
shootings as the other, and we KST1→2 to look for significant
space-time interactions. We used randomization testing with
1000 repetitions. We report call types which were significant
for p ≤ 0.01 in Table III.

From a predictive policing point of view, space-time tests
can serve as a feature selection method. As an evaluation,
we focused on the problem of predicting shootings at the po-
lice beat level. Chicago has 25 police districts, divided into
280 beats. The median area of a beat is 0.57 square miles,
equivalent in area to a square with side length 6 city blocks
(in Chicago, 8 city blocks are about a mile.) Chicago’s com-
munity policing efforts occur at the beat-level.

We built a simple logistic regression model, meant to model
the heat maps currently employed by many police depart-
ments. As features, for each type of 911 call j, for each day
of data t, at the centroid of each police beat i, we used the
previous 90 days of data to create a predictor X j

it capturing an
estimate of the intensity of each type of call, using (unnormal-
ized) kernel density estimation with RBF kernels with σ = 1

4
mile for space and 14 days for time. We used the same method
to create a smoothed predictor for shootings S it, using only the
last week of data. The dependent variable Yit was coded as bi-
nary: did a shooting occur on a given day in a given police

beat? Our model is as follows:

logit(Yit) ∼ β0 + αS it + β1X1
it + . . . + βpXp

it + ε

We split our data into a training set (January 2007-December
2008) and a test set (January 2009 - May 2010).

We could include every possible type of call to 911 as a
predictor—with 3.5 years of data and 280 beats, our data is
plentiful—and fit the full model using maximum likelihood.
However, our model is quite simplistic as it does not account
for spatial and temporal autocorrelation, so our effective sam-
ple size is certainly lower than the number of rows in the
dataset we generated. Thus, we prefer a more parsimonious
model; simpler models also have a better chance of actually
being used by a police department.

For these reasons, we compare two scenarios. In the first,
we use the Lasso to fit an L1-regularization path to the full
training dataset34 as implemented in the R package glmnet12.
In the second, we preprocess our dataset, selecting only the
features that we found to be significant using our space-time
test as shown in Table III. We used RBF kernels with band-
widths equivalent to the bandwidth of the smoothing kernel, 1

4
mile for space and 14 days for time. The setup is the same as
in the previous section, this time with random thinning to ob-
tain subsamples of size n = 50, 000. Finally, we use the Lasso
on this smaller dataset. In both cases, we calculate the true
positive rate (TPR) of our model for a fixed false positive rate
of 10%. (This corresponds to the probability that the model
will correctly predict a shooting on a certain day in a cer-
tain police beat while incorrectly predicting that there will be
shootings in 10% of the beat-days.) We show the TPR across
the regularization path, that is, as the number of features in
the model increases. As shown in Figure 6, the two models’
performance is pretty much indistinguishable on this metric
(as a sensitivity analysis, we tried a variety of bandwidths for
the smoothing kernel and the Mercer kernel, without discov-
ering any notable gains in performance.) We can also com-
pare the list of predictors in the order in which they enter the
model. For the preprocessed features selected by KST, the
first ten features to enter the model were: shots fired, shooting
(the lagged version of the dependent variable), officer pursu-
ing someone on foot, office heard shots fired, narcotics loi-
tering, officer station assignment, person shot, meeting of the
police beat unit, support unit request, gang loitering. The first
ten features to enter the full model were: shots fired, domestic
disturbance, person with a gun, shootings (the lagged version
of the dependent variable), officer eating lunch, vicious ani-
mal, parking violation, gang disturbance, gambling, battery in
progress. Both models seem to be picking up on important
predictors, but Lasso without preprocessing seems to also be
selecting some spurious predictors, e.g. police officers break-
ing for lunch and parking violations.

IV. DISCUSSION

A. Conclusion

In this paper we developed new statistical tests for space-
time interaction using kernel-based statistics for measuring
the distance between probability distributions, and compared
their performance to classical tests due to Knox, Mantel, and
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FIG. 6: We compared two models for predicting shootings
and homicides based on kernel-smoothed 911 calls. There

were about 275 different 911 call types (predictors), and both
models used L1 penalized-logistic regression on a training

data set. In the “Lasso” case, no preprocessing on the
predictors was done. In the “KST” case, the bivariate

forward-in-time KST12 test was used to select features with a
significant space-time interaction with the dependent variable
(incidents of shootings and homicides). Subsequently, Lasso

was used. The true positive rate is shown at a fixed false
positive rate of 10% as the number of predictors increases.

Diggle et al. Our new test outperformed the existing tests. We
illustrated the use of our test to the “broken windows” the-
ory, finding that none of the call types placed to Chicago’s
non-emergency services number were significant predictors
of either violent or non-violent crime. We also demonstrated
the use of our methods in a predictive policing application,
searching for leading indicators for shootings and homicides
among 911 call types. Our method served as a feature se-
lection, in which its performance in selecting features for a
prediction problem was comparable to the Lasso.
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p-value 311 call type
0.962 Abandoned Vehicle
0.317 Alley Light Out
0.193 Garbage Cart
0.042 Graffiti
0.974 Pot Hole
0.179 Rat
0.714 Sanitation
0.369 Street Lights
0.909 Tree
0.154 Vacant

(a) Space-time interaction tests
with violent crime

p-value 311 call type
0.039 Abandoned Vehicle
0.757 Alley Light Out
0.652 Garbage Cart
0.111 Graffiti
0.108 Pot Hole
0.668 Rat
0.314 Sanitation
0.806 Street Lights
0.589 Tree
0.091 Vacant

(b) Space-time interaction tests
with non-violent crime

TABLE II: Controlling for spatial and temporal variation, we
used KST12 to test whether any types of 311 calls are
predictive of violent crime nearby in space and time.

Randomization testing was performed with 1000 repetitions.
For α = .01, no p-values were significant, meaning that none

of the types of calls to 311 showed significant correlation
with crime that could not be explained by underlying spatial

and temporal trends.
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