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Abstract
While the framework of Gaussian process priors for functions is very flexible and
has a number of advantages, its use within a fully Bayesian hierarchical modeling
framework has been limited due to computational constraints. Most often, simple
models are fit, with hyperparameters learned by maximum likelihood. But this ap-
proach understates the posterior uncertainty in inference. We consider priors over
kernel hyperparameters, thus inducing a very flexible Bayesian hierarchical modeling
framework in which we perform inference using MCMC not just for the posterior
function but also for the posterior over the kernel hyperparameters. We address the
central challenge of computational efficiency with MCMC by exploiting separable
structure in the covariance matrix corresponding to the kernel, yielding significant
gains in time and memory efficiency. Our method can be conveniently implemented
in a probabilistic programming language (Stan), is widely applicable to any setting
involving structured kernels, and immediately enables a number of useful features,
including kernel learning through novel prior specifications, learning nonparametric
priors over categorical variables, clustering through a factor analysis approach, and
missing observations. We demonstrate our methods on real and synthetic spatiotem-
poral datasets.

1 Introduction

Gaussian process modeling has a long history in statistics and machine learning [21, 33, 20, 22]. The
central modeling choice with GPs is the specification of a kernel. As revealed by the extensive spatial
statistics literature on this topic (where a stationary kernel is presented as the mathematically equivalent
“covariogram”) this is by no means a trivial problem, and it can be very hard to estimate a kernel
from data, even with scientific knowledge. For this reason, we stress the importance of placing prior
distributions on kernel hyperparameters. This stands in contrast to most applications of GPs, where
kernel hyperparameters are learned using a maximum likelihood approach.

We address the computational challenges that stand in the way of a fully Bayesian approach to Gaus-
sian process modeling. Our approach works in the case of separable kernels and grid-structured inputs,
which together induce structure in the design matrix. Our approach is applicable to any Markov Chain
Monte Carlo (MCMC) scheme for Bayesian inference, and we demonstrate its use within Hamiltonian
Monte Carlo as implemented in the probabilistic programming language Stan. Our implementation
is much faster and uses much less memory than standard approaches, thus opening up many new av-
enues for scalable Bayesian modeling on orders of magnitude larger datasets (see Figure 1). By placing
priors on kernel hyperparameters, our model becomes more general than standard GP regression or
classification. To demonstrate, we show how to efficiently learn structured kernels (e.g. those with a
multiplicative structure) and non-parametric priors over categorical variables. We propose a clustering
through factor analysis method, address the limitation of separable structure, show how to automati-
cally handle missing observations (i.e. for incomplete grids), and extend our methods for non-Gaussian
observation models.
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Efficiency gains from structured covariance functions within GP models have been exploited previously
with MCMC (e.g. [8]). There is much recent work on approximate methods for Gaussian processes
and kernels (e.g. [26, 16, 14, 36]). Our work builds on previous work exploiting structured kernels and
especially Kronecker methods for GP learning and inference (e.g. [29, 27, 11, 23, 35, 13, 9]).

In Section 2 we provide background on MCMC, GPs, and Kronecker inference. In Section 3 we de-
velop our scalable learning and inference methods. In Section 4 we demonstrate the novel modeling
approaches that our methods enable. In Section 5 we compare our model’s performance on synthetic
data to standard implementations of elliptical slice sampling and HMC, and we demonstrate our novel
modeling approaches on a real dataset. Implementations in Stan are provided in the Appendix.

2 Background

2.1 Markov Chain Monte Carlo sampling

Markov Chain Monte Carlo sampling schemes are methods for numerical inference in Bayesian models
in which random samples are iteratively generated, where the limiting distribution of the samples is the
posterior over the parameters in the model. For non-conjugate models, MCMC is the default inference
method. In the hierarchical GP models we consider, with priors over kernel hyperparameters, the poste-
rior is not a Gaussian process, which is why we use MCMC. A critical subroutine, executed each time
a new draw is generated, is the evaluation of the log of the probability density of the posterior at the
current values of the parameters, which can be very costly in a GP model as described below.

Another reason that MCMC inference for GP models is challenging is that the parameters in Gaussian
process models are tightly correlated, so off-the-shelf methods like Metropolis-Hastings and Gibbs
sampling, which are known to have slow convergence in the case of correlated parameters, have not
proved effective1. Early work by Neal focused on Hamiltonian Monte Carlo (HMC) [20], a method
drawn from the physics literature that uses gradient information to make sampling more efficient. More
recent work has focused on variants of slice sampling, especially elliptical slice sampling [1, 19, 18]
which provides a variant on Metropolis-Hastings without tuning parameters by adaptively selecting
the step size. Our methods could be used in either of these schemes; to demonstrate the modeling
advantages that our approach enables, we implement them using a probabilistic programming language
(Stan), which uses HMC.

2.2 Gaussian processes
Given observations (X,Y ) = {(x1, y1), . . . , (xn, yn)}, let kθ(·, ·) be a kernel with hyperparameters θ
and corresponding covariance matrix Kθ. Placing a prior on θ, the hierarchical specification is:

θ ∼ p(θ) (1)
f | X,θ ∼ N (µ,Kθ) (2)

yi | f(xi) ∼ N (f(xi), σ
2), ∀i (3)

The computational difficulty of an MCMC scheme for this model arises from Eq. (2) which requires the
computation of a multivariate Gaussian pdf:

N (µ,Kθ) = (2π)−n/2|Kθ|−1/2e−
1
2µ
>K−1

θ µ (4)

Forming Kθ takes storage O(n2) and it takes time O(n3) to calculate its inverse and log-determinant,
using e.g. the Cholesky decomposition [22]. This costly operation occurs for each draw of a sampler,
and HMC, it occurs for each “leapfrog” step, many of which are taken per draw.

We will primarily focus on the case of a Gaussian observation model. This will conveniently allow us
to sidestep the issues that arise from trying to sample f . For fixed hyperparameters, a GP prior with
Gaussian observation model is conjugate. Usually this is used to find the posterior distribution over f
in closed form. Our setting is even simpler: we only need to have a way of calculating the likelihood of
our observations y, integrating out f . We have the following standard result [22]:

y | X,θ,µ ∼ N (µ,Kθ + σ2I) (5)

1In a medium data spatial statistics setting, Diggle et al. [2013] report fitting a GP model with MCMC: after
running for 18 million iterations, they retained every 18,000th iteration to yield a sample size of 1,000.
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2.3 Kronecker inference

A series of recent papers [27, 23, 11, 35, 13, 9] has developed a set of inference techniques for the case
of GP inference and prediction with separable covariance structures and inputs with a Cartesian product
structure. We extend this line of work to an MCMC framework.

Assume that the covariance function k(·, ·) decomposes with Kronecker structure so that k = k1⊗k2⊗
· · · ⊗ kd meaning that k(x, x′) = k1(x1, x

′
1)k2(x2, x

′
2) · · · k(xd, x

′
d) for x ∈ Rd. Further assume that

we have a grid of input locations given by the Cartesian product (x11, . . . , x
N
1 ) × (x12, . . . , x

N
2 ) · · · ×

(x1d, . . . , x
N
d ) where for notational convenience we assume the grid has the same size N in each di-

mension. Then the covariance matrix K corresponding to k(·, ·) has Nd × Nd entries, but it can be
calculated by first calculating the smaller N ×N covariance matrices K1, . . . ,Kd and then calculating
the Kronecker productK = K1⊗K2⊗· · ·⊗Kd. The assumption that our data lies on a grid occurs nat-
urally in various settings: images [35], spatiotemporal point patterns [9], and as we will illustrate below,
time series and categorical data (where grid cells correspond to cells in a contingency table.)

We rely on standard Kronecker algebra results [27], specifically efficient Kronecker matrix-vector multi-
plication to calculate expressions like (K1⊗K2⊗· · ·⊗Kd)v, efficient eigendecomposition of Kronecker
matrices, and efficient Cholesky factorization of Kronecker matrices.

3 Theory

3.1 Inference

A key subroutine in any MCMC scheme is the evaluation of the log of the probability density function
(pdf) of the posterior. In a GP model, this means calculating the pdf of a Gaussian distribution shown
in Eq. (4). Following [27], we show how to efficiently evaluate the pdf in the case of a Kronecker-
structured covariance matrix Kθ and also in the case of a covariance matrix Kθ +σ2I , which will arise
when we analytically integrate out f .

Working with the log of the pdf, and considering the case of K = K1 ⊗ K2 (the extension to higher
dimensions follows as in [27]), the log of Eq. (4) is:

−n
2

log(2π)− 1

2
log |K1 ⊗K2| −

1

2
y>(K1 ⊗K2)−1y (6)

for observations y, where we have assumed for simplicity that µ = 0. Applying standard Kronecker
algebra results, we calculate:

log |K1 ⊗K2| = N2 log |K1|+N1 log |K2| (7)

where K1 is N1 ×N1 and K2 is N2 ×N2. If we let Y be the reshaped column-major N2 ×N1 matrix
corresponding to y, so that vec(Y ) = y (where vec stacks columns of a matrix), then we have:

(K1 ⊗K2)−1y = K−11 (Y K−12 )> (8)

And we apply any standard linear solver to evaluate these matrix products. In general, for n training
points on a d-dimensional grid, the time complexity is O(dn

d+1
d ) where n = Nd and N1 = N2 =

· · · = Nd = N [27] .

For a Gaussian observation model after integrating out f , our sampler needs to be to evaluate the
log of the pdf in Eq. (5). We can use eigendecomposition where K1 = Q>1 Λ1Q1, K2 = Q>2 Λ2Q2

gives:
K1 ⊗K2 = (Q>1 ⊗Q>2 )(Λ1 ⊗ Λ2)(Q1 ⊗Q2) (9)

and since the Q matrices are orthonormal:

K1 ⊗K2 + σ2I = (Q>1 ⊗Q>2 )(Λ1 ⊗ Λ2 + σ2I)(Q1 ⊗Q2) (10)

Thus we can calculate:

log |K1 ⊗K2 + σ2I| = N1N2

∑
ij

log(Λ1iiΛ2jj + σ2) (11)

(K1 ⊗K2 + σ2I)−1y =
(
(Q>1 ⊗Q>2 )(Λ1 ⊗ Λ2 + σ2I)−1(Q1 ⊗Q2)

)
y (12)
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Eq. (11) follows because the eigenvalues of K1 and K2 are given by the diagonal of Λ1 and Λ2 and the
computation is O(N1N2) or in general O(n). For Eq. (12), we use a Kronecker matrix-vector product
to calculate (Q1 ⊗Q2)y. The middle term (Λ1 ⊗Λ2 + σ2I)−1 is diagonal, and multiplying a diagonal
matrix by a vector is just the elementwise product. Finally, we have one more Kronecker matrix-vector
product to calculate, as above. Eigendecomposition is O(N3) for an N ×N matrix. Additional speed
improvements are available for the calculation of the smaller Ki matrices: e.g., FFT works well for
stationary kernels and regular gridded input [24] and Toeplitz methods work well for stationary kernels
in one-dimension with regularly spaced inputs [6].

3.2 Prediction

We can extend the ideas introduced above to efficiently infer the posterior p(f∗|y,X, x∗) at a new
location x∗. For a fixed Kθ we have the following standard result [22]:

p(f∗|y,X, x∗,θ) = N (K∗θ(Kθ + σ2I)−1y,K∗∗θ −K∗θ(Kθ + σ2I)−1K∗>θ ) (13)

where K∗θ = [kθ(x∗, x1), . . . , kθ(x∗, xn)] and K∗∗θ = kθ(x∗, x∗). A naive implementation would have
time complexity O(n3). To calculate the mean in Eq (13), we can again exploit Kronecker structure
with the eigendecompositions in Eqs. (9) and (12):

K∗θ(Kθ + σ2I)−1y = K∗θ(Q>1 ⊗Q>2 )(Λ1 ⊗ Λ2 + σ2I)−1(Q1 ⊗Q2)y (14)

We now apply Kronecker-matrix vector multiplication to the first two terms and the last two terms,
and we are left with a vector times a diagonal matrix times a vector, which we can calculate efficiently
through elementwise vector multiplication. Thus, the overall complexity is the same as for Eq. (12).
For the variance term we have:

K∗∗θ −K∗θ(Kθ + σ2I)−1K∗>θ = K∗∗θ −K∗θ(Q>1 ⊗Q>2 )(Λ1 ⊗ Λ2 + σ2I)−1(Q1 ⊗Q2)K∗>θ (15)

We use Kronecker matrix-vector multiplication twice to efficiently calculate the variance.

4 Modeling approaches

In this section, we demonstrate the advantages and flexibility of a fully Bayesian approach to GP mod-
eling. We explore priors for categorical data and a low-rank factor analysis style model for clustering,
demonstrate novel priors over hyperparameters for structured kernels, show how to infer missing data,
and close with extensions for non-Gaussian observation models.

4.1 Kernel choice and priors over hyperparameters

The spatial statistics and machine learning literature provides a rich palette of scientifically and statisti-
cally motivated kernels from which to choose. As with any modeling choice, this could be informed by
prior information, continuous model expansion [10], or a nonparametric [34] approach could be taken.
Because the problem of kernel learning is so difficult, including priors over the kernel hyperparameters
to accurately characterize posterior uncertainty is very important.

Another advantage of placing priors over kernel hyperparameters is that the posterior distribution, which
integrates out these parameters, is a heavy tailed non-Gaussian process. Following [1], we adopt weakly
informative priors for inverse length-scales and variances which concentrate their support on reasonable
values. We face an issue similar to the problem of applying HMC to neural networks [3]: small changes
in the inverse length-scales can result in orders-of-magnitude changes in the posterior. Experience
suggests that more informative priors can contribute to sampling efficiency with HMC. Our provisional
suggestions for priors are given in Section A.1 for standard stationary kernels.

4.2 Categorical data

Consider a multitask / co-kriging model where our dataset is structured as a real-valued observation yi
from category (task) ci occuring at time ti. We propose the following GP model:

yi ∼ N (f(ti, ci), σ
2) (16)

f(t, c) ∼ GP(0,Kt ⊗Kc) (17)
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We can immediately apply the methods developed in the previous sections to this setting, which is
similar to the multitask approach in [2]. It remains to choose the kernel over categories. Let us express
ci as an indicator vector, where, e.g. for 3 categories we have the vectors [1 0 0]>, [0 1 0]> and [0 0 1]>.
Then we can use the covariance matrix Kc as the kernel:

k(c, c′) = c>Kcc (18)

The default choice of prior for a covariance matrix is the inverse Wishart distribution, which is conju-
gate, but has well-known drawbacks; various alternatives have been proposed and analyzed [30]. As an
alternative, and because we only care about learning correlations, not covariances, between tasks, we
use a recently proposed prior [17] which was termed the LKJ prior in [28]. This prior has the advantage
that for precision parameter α = 2, each partial correlation has distribution Uniform(−1, 1).

4.3 Factor analysis

Another natural extension if we want to cluster our m categories into p clusters is to use a low-rank
factorization where Ks = LL> + σ2I with Ks ∈ Rm×m and L ∈ Rm×p for p � m. This kernel
has been called a “factor analysis” kernel [22]. We propose constraining each row of L to sum to 1 to
represent a soft clustering model, where Lij gives the degree of membership of xi in group j. A natural
choice of prior is the Dirichlet distribution. Denoting row i of L as Li we have:

Li
iid∼ Dirichlet(α, . . . , α) (19)

for a concentration parameter α which may be fixed or have its own prior.

If we have, for example, time series observations for each category and we want to cluster categories
then we can use the Kronecker formulation: K = Kt ⊗ Ks. The factorization above is convenient
because we can readily obtain the eigendecomposition of Eq. (12) through singular value decomposition
(SVD) of L. We can efficiently find the p singular values of L, which we denote e1, . . . , ep. Then the m
eigenvalues of Ks are e21 + σ2, . . . , e2p + σ2, σ2, . . . , σ2. Similarly, we can use the left-singular vectors
from SVD to obtain the eigenvectors of Ks.

4.4 Additive models
Another structured model worth considering is an additive covariance model Ks+Kt, which is equiva-
lent to f ∼ GP(0,Ks) + GP(0,Kt). We propose a very convenient way of emulating this model using
a mixture modeling approach. We introduce a latent variable z ∼ Bernoulli(π). Then we have:

f |z = 0 ∼ GP(0,Ks) (20)
f |z = 1 ∼ GP(0,Kt) (21)

The goal is to obtain a very flexible model, without adding much computational burden. As shown in
the Appendix, the implementation is very straightforward after integrating out z.

4.5 Non-separable covariances

In this section we propose a way of relaxing the assumption of separability. Standard machine learn-
ing kernels like RBF (with or without Automatic Relevance Determination) have a separable product
structure. While these kernels have proven quite successful for machine learning approaches, in spa-
tiotemporal settings separable structure in a space/time covariance function implies the potentially un-
desirable property that for a space/time covariance function K((s, t), (s′, t′)) the temporal covariance
structure does not vary in space, and the spatial covariance structure does not vary in time [25]. But in
a variety of applications, it is precisely the second order space/time interaction that we are interested in
modeling.

While there has been vigorous work in recent decades on proposing classes of non-separable covariance
functions [5, 12], we propose a much simpler approach for modeling non-separability which preserves
the computational benefits of the Kronecker structure. We consider placing a joint prior on the hyper-
parameters. Let Ks have lengthscale λs and Kt have lengthscale λt. Then the β parameter models the
“interaction” between dimensions s and t:(

λs
λt

)
∼ N

(
µst,

(
σ2
s β
β σ2

t

))
(22)
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4.6 Missing observations

Incomplete grids due to missing observations can be straightforwardly handled in the fully Bayesian
framework (especially when using a probabilistic programming language): for any observation location
xi where we do not observe yi, we treat yi as a latent parameter. The key likelihood calculation in
Eq. (6) remains the same, only now we mix together observed (and thus for the purposes of our sampler
fixed) yi’s with missing yi’s which we must learn by sampling. Code is in the Appendix.

4.7 Extensions to non-Gaussian observation models

Non-Gaussian observation models are very useful for generalized regression and classification. For
example, classification uses the Bernoulli likelihood with logistic link function:

y ∼ Bernoulli(logit(f(x))) (23)
f ∼ GP(0,Kθ) (24)

This model is no longer conjugate, so we cannot integrate out f , but we can handle it in an MCMC
framework. This has the effect of increasing the number of parameters in our model, and these parame-
ters have strong correlations. To attempt to mitigate these correlations, we adopt the formulation of [4]
which has been used in HMC in [31], introducing latent variables z1, . . . , zn based on the weight-space
view of GPs:

z1, . . . , zn
iid∼ N (0, 1) (25)

Now we calculate Kθ and its Cholesky decomposition L where LLT = Kθ. Then we have:

f := Lz (26)
yi ∼ Bernoulli(logit(f(xi))) (27)

By introducing z we have avoided some computational difficulty as we no longer need to calculate the
determinant of Kθ. But we still need to calculate K itself and its Cholesky decomposition, which is
O(n3) time andO(n2) memory. Once again we can exploit two Kronecker algebra results. We calculate
theN×N Kronecker matricesKs andKt and find their Cholesky decompositions Ls and Lt inO(N3)
time. Since K = LL> we have:

K = Ks ⊗Kt = (Ls ⊗ Lt)(L>s ⊗ L>t ) (28)

Now we need to calculate f = Lz = (Ls ⊗ Lt)z for Eq. (26). Once again, we use efficient Kronecker
matrix-vector multiplication. Now, rather than a costly multivariate Gaussian pdf, we only have to
evaluate the much cheaper univariate Gaussian distribution in Eq. (25).

In practice, we have had difficulties using HMC to update both z1, . . . , zn and the hyperparameters
simultaneously. A reasonable solution might be to follow the blocked approach of [1, 32], wherein the
hyperparameters are sampled with, e.g. HMC and then conditional on these hyperparameters the zi are
sampled, with HMC or another algorithm.

5 Experiments

We implemented our models using HMC in the probabilistic programming language Stan [28]. This
allowed us to easily try out different choices of priors and different modeling approaches. All source
code is provided in the Appendix.

5.1 Synthetic data

We simulate from a Gaussian process on an n × n regular grid using a product of RBF kernels:
k((s, t), (s′, t′)) = e−4|s−s

′|2e−|t−t
′|2 with spherical Gaussian noise σ = 0.1. A sample is shown in

Figure A1. We compare our proposed Kronecker-based inference to non-Kronecker inference, both with
HMC, and to elliptical slice sampling. As shown in Figure 1 our approach is much more efficient than
the alternatives. We are not in a regime in which theO(n3) asymptoptic time of the Cholesky decompo-
sition dominates the computation, and there are many other factors which come into play in determining
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Figure 1: Our method (“Kronecker HMC”) was implemented in Stan, standard HMC and elliptical
slice sampling were implemented in GPstuff. HMC was run for 200 iterations, with 100 iterations of
warm-up, and elliptical slice sampling (ESS) for 30 iterations. Each method was compared on the same
simulated datasets (Section A.2).

how long MCMC takes to run, but it is clear that our HMC approach is much faster, especially consid-
ering that we implemented it in a general purpose probabilistic programming language (Stan) rather
than relying on custom code. Furthermore, the memory requirements for the non-Kronecker methods
became prohibitively large in practice. As another comparison, we calculated the effective sample size
[15] for a dataset of size n = 2,500. Our model generated an effective sample of 203 draws in 296 sec-
onds or 0.69 samples per second. Elliptical slice sampling generated an effective sample of 221 draws
in 3,438 seconds or 0.06 samples per second. Standard HMC generated an effective sample size of 51
samples in 31,364 seconds or 0.002 samples per second.

5.2 Real data
We obtained time series of monthly population-adjusted incidence of hepatitis A, measles, mumps,
pertussis, and rubella for the 48 lower United States plus DC from Project Tycho2.

We used our factor analysis formulation to cluster US states based on the time series of measles
incidence. Our separable covariance function was Kt ⊗ Ks where Kt was an RBF kernel and
Ks = ΛΛ> + σ2I , with a Dirichlet(0.1, 0.1, 0.1) on each row of Λ ∈ R49×3. The clustering of
states is shown in Figure 2 (left): a geographic pattern is recovered, despite the model not using ge-
ographic information. In Figure 2 (right) we show the posterior mean time series averaged for each
cluster. Different dynamics are evident.

We used the centroids of each state in an additive model with covariance Ks +Kt for RBF kernels and
joint prior on the inverse length-scales as proposed in Section 4.5. The posterior over the space/time
interaction β was 0.47 with 95% UI: (0.02,0.96), indicating nonseparability in the covariance structure
of the data, at least as compared to an additive model. The mixture component weights were 0.67 forKs

and 0.33 for Kt. Finally, we considered the national time series for 4 different diseases from the Project
Tycho dataset with a separable covariance Kt ⊗ Kc where Kt is as above and Kc is the categorical
kernel in Eq. (18). We assign an LKJ prior with α = 2 over the cross-type correlation matrix Kc. In
Table 1 we show the posterior cross-type correlation matrix Kc. The lengthscale for Kt was 2 months
(1.9, 2.3) which corresponds to short-scale variation. Posterior plots are shown in Figure 3.

Hepatitis A Mumps Pertussis Rubella
Hepatitis A 1 0.6 (0.4,0.8) -0.3 (-0.6,-0.1) 0.4 (0.1,0.6)

Mumps 0.6 (0.4,0.8) 1 -0.2 (-0.4,0.0) 0.6 (0.4,0.7)
Pertussis -0.3 (-0.6,-0.1) -0.2 (-0.4,0.0) 1 -0.2 (-0.5,-0.0)
Rubella 0.4 (0.1,0.6) 0.6 (0.4,0.7) -0.2 (-0.5,-0.0) 1

Table 1: For the multitask model with covariance Kt ⊗Kc, we learned the posterior over a cross-task
correlation matrix Kc. Medians and 95% UI intervals are stated. The corresponding lengthscale for Kt

was 2 months (1.9, 2.4) which corresponds to short-scale variation.

2www.tycho.pitt.edu
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Cluster 1

Cluster 2

Cluster 3
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Figure 2: Left: clustering US states based on their time series of measles incidence. For each state we
learned a 3-dimensional vector giving cluster assignment probabilities. We assign each state to its most
probable cluster of the three, and shade it accordingly. Despite not using any geographic information
in our model, we find a clear geographic pattern based on the similarities in time series. Right: mean
posterior time series are shown for each cluster with evident differences in dynamics.
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Figure 3: Raw incidence across the United States of 4 types of infectious disease are shown as points,
along with our model’s estimates and 95% uncertainty intervals.

6 Conclusion
We presented a Bayesian hierarchical modeling framework based on GPs, and demonstrated the ef-
ficiency gains possible in the case of structured kernels as compared to standard approaches. This
modeling approach enabled a variety of interesting and novel models and approaches to kernel learning.
Further work is needed on the challenges of a non-Gaussian observation model. Inducing points might
prove useful for further speedups and a relaxation of the grid requirement.
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A Appendix

A.1 Priors for kernel hyperparameters

For a stationary kernel k(x, x′) = v2κ(|x − x′|2λ) + σ2I(x = x′) where, e.g. κ(d) = exp(−d2)

is the RBF kernel or κ(d) =
(
1 + d

√
3
)

exp
(
−d
√

3
)

is the Matérn- 32 kernel we suggest priors as
follows:

• The inverse length-scale λ should have a weakly informative prior, like Cauchy(0, 2.5) con-
strained to be positive (also known as the half-Cauchy).3 We usually standardize our input
locations to have standard deviation 1, but it is very important to untransform the learned
length-scale to check that it is a reasonable value.

• The signal-variance v2 should be about the scale of the data. In practice, we standardize our
observed y to have standard deviation 1 so that we can place a log-normal(0, 1) prior on v2.

• For computational reasons (equivalent to the jitter that is often added to the main diagonal) we
constrain the nugget σ2 to be greater than ε = 10−6 and use a log-normal(0, 1) prior.

A.2 Synthetic Data

To generate large synthetic datasets, we use the following R code:

library(kernlab)

eps = 1e-8
n = 200
space = seq(-2,2,length.out=n)
time = space

K1 = kernelMatrix(rbfdot(4), as.matrix(space))
K2 = kernelMatrix(rbfdot(1), as.matrix(time))
L1 = chol(K1 + eps * diag(n))
L2 = chol(K2 + eps * diag(n))

v = rnorm(n*n)
y = as.numeric(matrix(t(t(L2) %*% matrix(t(t(L1) %*% matrix(v,n,n)),n,n)),n*n,1))
y = y + rnorm(n*n,sd=.1) # Add spherical noise

data = list(n1=length(space),n2=length(time), x1=space, x2=time, y=as.numeric(y))

A sample dataset is shown in Figure A1.

3An alternative worth considering is placing a Student-t with ν = 4 centered at 0 with scale parameter 1
constrained to be positive on the length-scale. This is a more informative choice than the half-Cauchy.
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Figure A1: A synthetic dataset with n = 40, 000 observations generated by a GP with a separable
covariance function k((s, t), (s′, t′) = e−4|s−s

′|2e−|t−t
′|2 .

A.3 Stan source code for categorical data model

functions {
// return (A \otimes B) v where:
// A is n1 x n1, B = n2 x n2, V = n2 x n1 = reshape(v,n2,n1)
matrix kron_mvprod(matrix A, matrix B, matrix V) {
return transpose(A * transpose(B * V));

}

// A is a length n1 vector, B is a length n2 vector.
// Treating them as diagonal matrices, this calculates:
// v = (A \otimes B + sigma2)ˆ{-1}
// and returns the n1 x n2 matrix V = reshape(v,n1,n2)
matrix calculate_eigenvalues(vector A, vector B, int n1, int n2, real sigma2) {
matrix[n1,n2] e;
for(i in 1:n1) {
for(j in 1:n2) {
e[i,j] <- (A[i] * B[j] + sigma2);

}
}
return(e);

}
}

data {
int<lower=1> n1;
int<lower=1> n2; // categories for learning cross-type correlations
vector[n2] x1; // observation locations (e.g. timestamps)
matrix[n2,n1] y; // NB: this should be reshape(y, n2, n1),

// where y corresponds to expand.grid(x2,x1).
// To double-check, make sure that y[i,j] is
// the observation from category x2[i]
// at location x1[j]

}

transformed data {
matrix[n1, n1] xd;
vector[2] one;
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one[1] <- 1;
one[2] <- 1;

for (i in 1:n1) {
xd[i, i] <- 0;
for (j in (i+1):n1) {
xd[i, j] <- -(x1[i]-x1[j])ˆ2;
xd[j, i] <- xd[i, j];

}
}

}
parameters {
real<lower=0> var1; // signal variance
real<lower=0> bw1; // this is equivalent to 1/sqrt(length-scale)
corr_matrix[n2] L;
real<lower=0.00001> sigma1;

}

model {
matrix[n1, n1] Sigma1;
matrix[n1, n1] Q1;
vector[n1] R1;
matrix[n2, n2] Q2;
vector[n2] R2;
matrix[n2,n1] eigenvalues;

Sigma1 <- var1 * exp(xd * bw1);
for(i in 1:n1)
Sigma1[i,i] <- Sigma1[i,i] + .00001;

L ˜ lkj_corr(2.0);

Q1 <- eigenvectors_sym(Sigma1);
R1 <- eigenvalues_sym(Sigma1);

Q2 <- eigenvectors_sym(L);
R2 <- eigenvalues_sym(L);

eigenvalues <- calculate_eigenvalues(R2,R1,n2,n1,sigma1);

var1 ˜ lognormal(0,1);
bw1 ˜ cauchy(0,2.5);
sigma1 ˜ lognormal(0,1);
increment_log_prob(

-0.5 * sum(y .* kron_mvprod(Q1,Q2, // calculates -0.5 * y’ (K1 \otimes K2) y
kron_mvprod(transpose(Q1),transpose(Q2),y) ./ eigenvalues))

-0.5 * sum(log(eigenvalues))); // calculates logdet(K1 \otimes K2)
}

A.4 Stan source code for low-rank factorization model

functions {
... see first model above ...

}
data {
int<lower=1> n1; // categories for clustering

int<lower=1> n2;
vector[n2] x2; // observation locations (e.g. timestamps)

matrix[n2,n1] y; // NB: this should be reshape(y, n2, n1),
// where y corresponds to expand.grid(x2,x1).
// To double-check, make sure that y[i,j] is
// the observation from category x1[j] at location
// x2[i]

12



int K;
}
transformed data {
vector[K] alpha;
matrix[n2,n2] xd;
for(i in 1:n2) {
xd[i,i] <- 0;
for (j in (i+1):n2) {
xd[i, j] <- -(x2[i]-x2[j])ˆ2;
xd[j, i] <- xd[i, j];

}
}

for(i in 1:K)
alpha[i] <- .1;

}
parameters {
real<lower=0> var1;
real<lower=0> bw2;
real<lower=0.0001> sigma1;
real<lower=0.0001> sigma2;
simplex[K] Lambda1[n1];

}
transformed parameters {
matrix[n1,K] Lambda1m;
for(i in 1:n1) {
Lambda1m[i] <- to_row_vector(Lambda1[i]);

}
}

model {
matrix[n1, n1] Sigma1;
matrix[n2, n2] Sigma2;
matrix[n1, n1] Q1;
matrix[n2, n2] Q2;
vector[n1] L1;
vector[n2] L2;
matrix[n2,n1] eigenvalues;

for(i in 1:n1)
to_vector(Lambda1[i]) ˜ dirichlet(alpha);

Sigma1 <- var1 * Lambda1m * transpose(Lambda1m);
for (i in 1:n1)
Sigma1[i] <- Sigma1[i] + sigma1;

Sigma2 <- exp(xd * bw2);
for (i in 1:n2) {
Sigma2[i, i] <- Sigma2[i,i] + 0.000001;

}

Q1 <- eigenvectors_sym(Sigma1);
Q2 <- eigenvectors_sym(Sigma2);
L1 <- eigenvalues_sym(Sigma1);
L2 <- eigenvalues_sym(Sigma2);

eigenvalues <- calculate_eigenvalues(L2,L1,n2,n1,sigma2);
bw2 ˜ cauchy(0,2.5);
var1 ˜ lognormal(0,1);
sigma1 ˜ lognormal(0,1);
sigma2 ˜ lognormal(0,1);
increment_log_prob(

-0.5 * sum(y .* kron_mvprod(Q1,Q2, // calculates -0.5 * y’ (K1 \otimes K2) y
kron_mvprod(transpose(Q1),transpose(Q2),y) ./ eigenvalues))

-0.5 * sum(log(eigenvalues))); // calculates logdet(K1 \otimes K2)
}
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A.5 Stan source code for synthetic data

functions {
... see first model above ...

}

data {
int<lower=1> n1;
int<lower=1> n2;
vector[n1] x1;
vector[n2] x2;
matrix[n1,n2] y;
real sigma2;

}

parameters {
real<lower=0> bw1;
real<lower=0> bw2;
real<lower=0> var1;

}

model {
matrix[n1, n1] Sigma1;
matrix[n2, n2] Sigma2;
matrix[n1, n1] Q1;
matrix[n2, n2] Q2;
vector[n1] L1;
vector[n2] L2;
matrix[n1,n2] eigenvalues;

// these loops can be moved to the transformed data
// block for efficiency, as in the source code in
// the next section
for (i in 1:n1) {
Sigma1[i, i] <- var1;
for (j in (i+1):n1) {
Sigma1[i, j] <- var1 * exp(-(x1[i]-x1[j])ˆ2*bw1);
Sigma1[j, i] <- Sigma1[i, j];

}
}
for (i in 1:n2) {
Sigma2[i, i] <- 1;
for (j in (i+1):n2) {
Sigma2[i, j] <- exp(-(x2[i]-x2[j])ˆ2*bw2);
Sigma2[j, i] <- Sigma2[i, j];

}
}

Q1 <- eigenvectors_sym(Sigma1);
Q2 <- eigenvectors_sym(Sigma2);
L1 <- eigenvalues_sym(Sigma1);
L2 <- eigenvalues_sym(Sigma2);

eigenvalues <- calculate_eigenvalues(L1,L2,n1,n2,sigma2);
var1 ˜ lognormal(0,1);
bw1 ˜ cauchy(0,2.5);
bw2 ˜ cauchy(0,2.5);
sigma2 ˜ lognormal(0,1);
increment_log_prob( -0.5 * sum(y .* kron_mvprod(Q1,Q2,

kron_mvprod(transpose(Q1),transpose(Q2),y) ./ eigenvalues))
- .5 * sum(log(eigenvalues)));

}

A.6 Stan source code for incomplete grids / missing observations
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functions {
... see first model above ...

}
data {
int<lower=1> n1;
int<lower=1> n2;
int<lower=0> nmissing;
vector[n1] x1;
vector[n2] x2;
matrix[n2,n1] y;
int x1missing[nmissing];
int x2missing[nmissing];

}

transformed data {
matrix[n1, n1] xd1;
matrix[n2, n2] xd2;

for(i in 1:n1) {
xd1[i, i] <- 0;
for (j in (i+1):n1) {
xd1[i, j] <- -(x1[i]-x1[j])ˆ2;
xd1[j, i] <- xd1[i, j];

}
}
for (i in 1:n2) {
xd2[i, i] <- 0;
for (j in (i+1):n2) {
xd2[i, j] <- -(x2[i]-x2[j])ˆ2;
xd2[j, i] <- xd2[i, j];

}
}

}
parameters {
real<lower=0> var1; // signal variance
real<lower=0> bw1; // bandwidth
real<lower=0> bw2;
real<lower=0.00001> sigma1;
vector[nmissing] ymissing;

}
transformed parameters {
matrix[n2,n1] ystar;
ystar <- y;
for(i in 1:nmissing) {
ystar[x2missing[i],x1missing[i]] <- ymissing[i];

}
}

model {
matrix[n1, n1] Sigma1;
matrix[n2, n2] Sigma2;
matrix[n1, n1] Q1;
vector[n1] R1;
matrix[n2, n2] Q2;
vector[n2] R2;
matrix[n2,n1] eigenvalues;

Sigma1 <- var1 * exp(xd1 * bw1);
for(i in 1:n1)
Sigma1[i,i] <- Sigma1[i,i] + .00001;

Sigma2 <- exp(xd2 * bw2);
for(i in 1:n2)
Sigma2[i,i] <- Sigma2[i,i] + .00001;

Q1 <- eigenvectors_sym(Sigma1);
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R1 <- eigenvalues_sym(Sigma1);

Q2 <- eigenvectors_sym(Sigma2);
R2 <- eigenvalues_sym(Sigma2);

eigenvalues <- calculate_eigenvalues(R2,R1,n2,n1,sigma1);

var1 ˜ lognormal(0,1);
bw1 ˜ cauchy(0,2.5);
bw2 ˜ cauchy(0,2.5);
sigma1 ˜ lognormal(0,1);
increment_log_prob(

-0.5 * sum(ystar .* kron_mvprod(Q1,Q2,
kron_mvprod(transpose(Q1),transpose(Q2),ystar) ./ eigenvalues)) // calculates -0.5 * y’ (K1 \otimes K2) y

-0.5 * sum(log(eigenvalues))); // calculates logdet(K1 \otimes K2)
}

A.7 Stan source code for mixture model

data {
int<lower=1> n1;
int<lower=1> n2;
vector[2] x1[n1];
vector[n2] x2;
matrix[n2,n1] y;

}
transformed data{
vector[2] one;
matrix[n1,n2] yt;
vector[n1] zero1;
vector[n2] zero2;
one[1] <- 1;
one[2] <- 1;
for(i in 1:n1)
zero1[i] <- 0;

for(i in 1:n2)
zero2[i] <- 0;

yt <- transpose(y);
}
parameters {
real<lower=0> var1;
real<lower=0> var2;
vector<lower=0>[2] bw;
real<lower=0.00001> sigma1;
real<lower=0.00001> sigma2;
real<lower=0> spacetime;

}

model {
matrix[n1, n1] Sigma1;
matrix[n2, n2] Sigma2;
matrix[2,2] SpaceTime;
real lp1;
real lp2;

SpaceTime[1,1] <- 10;
SpaceTime[1,2] <- spacetime;
SpaceTime[2,1] <- spacetime;
SpaceTime[2,2] <- 10;

for (i in 1:n1) {
Sigma1[i, i] <- var1 + sigma1;
for (j in (i+1):n1) {
Sigma1[i, j] <- var1 * exp(-dot_self(x1[i]-x1[j])*bw[1]);
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Sigma1[j, i] <- Sigma1[i, j];
}

}
for (i in 1:n2) {
Sigma2[i, i] <- var2 + sigma2;
for (j in (i+1):n2) {
Sigma2[i, j] <- var2 * exp(-(x2[i]-x2[j])ˆ2*bw[2]);
Sigma2[j, i] <- Sigma2[i, j];

}
}

bw ˜ multi_normal(one,SpaceTime);
spacetime ˜ uniform(-1,1);
var1 ˜ lognormal(0,1);
var2 ˜ lognormal(0,1);
sigma1 ˜ lognormal(0,1);
sigma2 ˜ lognormal(0,1);
pi ˜ uniform(0,1);
lp1 <- 0;
for(i in 1:n2)
lp1 <- lp1 + multi_normal_log(y[i],zero1, Sigma1);

lp2 <- 0;
for(j in 1:n1)
lp2 <- lp2 + multi_normal_log(yt[j],zero2, Sigma2);

increment_log_prob(log_mix(pi,lp1,lp2));
}

A.8 Trace plots and summary statistics

For the multitask model, we ran 4 chains for 600 iterations with 200 iterations of warm-up. The effec-
tive sample size was above 1000 for each parameter, with the Gelman-Rubin potential scale reduction
statistic R̂ ≤ 1.01. Trace plots are shown in Figure A2.
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Figure A2: Traces show good convergence for the 4 chains, each of which was run for 600 iterations
after 200 iterations of warm-up.
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