Approximation Algorithms for Traffic Grooming in WDM Rings

K. Corcoran1 S. Flaxman2 M. Neyer3 C. Weidert4 \\
P. Scherpelz5 R. Libeskind-Hadas6

1University of Oregon, USA
2Ecole Polytechnique Fédérale de Lausanne, Switzerland
3University of North Carolina, USA
4Simon Fraser University, Canada
5University of Chicago, USA, Supported by the Hertz Foundation
6Harvey Mudd College, USA. This work was supported by the National Science Foundation under grant 0451293 to Harvey Mudd College
Problem Statement

Single-Source WDM Rings

- WDM ring with given set of wavelengths, each with fixed capacity
- Single source/hub from which all other destination nodes receive data
- Source node can transmit on all wavelengths
- Each destination node has some number of tunable ADMs
- A path from the source to a destination has a pre-determined route (e.g. all clockwise)
Single-Source WDM Rings

• WDM ring with given set of wavelengths, each with fixed capacity C
Single-Source WDM Rings

- WDM ring with given set of wavelengths, each with fixed capacity C
- Single source/hub from which all other destination nodes receive data
Single-Source WDM Rings

- WDM ring with given set of wavelengths, each with fixed capacity C
- Single source/hub from which all other destination nodes receive data
- Source node can transmit on all wavelengths
Single-Source WDM Rings

- WDM ring with given set of wavelengths, each with fixed capacity C
- Single source/hub from which all other destination nodes receive data
- Source node can transmit on all wavelengths
- Each destination node has some number of tunable ADMs
Single-Source WDM Rings

- WDM ring with given set of wavelengths, each with fixed capacity C
- Single source/hub from which all other destination nodes receive data
- Source node can transmit on all wavelengths
- Each destination node has some number of *tunable* ADMs
- A path from the source to a destination has a pre-determined route (e.g. all clockwise)
The Tunable Ring Grooming Problem

- Each node may make a request r for personalized data to be sent from the source
The Tunable Ring Grooming Problem

- Each node may make a request r for personalized data to be sent from the source.
- Request r consists of:
 - integer size: demand(r)
 - value: profit(r)
The Tunable Ring Grooming Problem

- Each node may make a request r for personalized data to be sent from the source.
- Request r consists of:
 - Integer size: $\text{demand}(r)$
 - Value: $\text{profit}(r)$
- A request may be partitioned onto multiple wavelengths in integral parts.
The Tunable Ring Grooming Problem

• Each node may make a request r for personalized data to be sent from the source
• request r consists of:
 • integer size: demand(r)
 • value: profit(r)
• A request may be partitioned onto multiple wavelengths in integral parts
• Multiple requests (or parts of requests) can be “groomed” onto the same wavelength
The Tunable Ring Grooming Problem

- Each node may make a request r for personalized data to be sent from the source.
- Request r consists of:
 - Integer size: $\text{demand}(r)$
 - Value: $\text{profit}(r)$
- A request may be partitioned onto multiple wavelengths in integral parts.
- Multiple requests (or parts of requests) can be “groomed” onto the same wavelength.
- **Objective**: Tune ADMs and groom requests onto wavelengths to maximize total profit of all satisfied requests.
Sample Instance of the Tunable Ring Grooming Problem

Figure: Capacity $C = 4$ for each wavelength. **Objective:** Tune ADMs and groom requests onto wavelengths to maximize total profit of all satisfied requests.
Sample Instance of the Tunable Ring Grooming Problem

Figure: A solution. Profit = 650. Is it optimal?
Sample Instance of the Tunable Ring Grooming Problem

Figure: Profit = 650

Figure: Profit = 950
Overview of Results

• The Tunable Ring Grooming Problem is NP-complete in the strong sense
Overview of Results

- The Tunable Ring Grooming Problem is NP-complete in the strong sense.
- Problem remains NP-complete even for special cases:
 - Only one wavelength, only one ADM per node, at least two ADMs per node.
Overview of Results

- The Tunable Ring Grooming Problem is NP-complete in the strong sense
- Problem remains NP-complete even for special cases
 - Only one wavelength, only one ADM per node, at least two ADMs per node
- Polynomial time **approximation schemes** for these special cases
Overview of Results

- The Tunable Ring Grooming Problem is NP-complete in the strong sense
- Problem remains NP-complete even for special cases
 - Only one wavelength, only one ADM per node, at least two ADMs per node
- Polynomial time **approximation schemes** for these special cases
- The “general case” that the number of ADMs is one or more appears to be the most challenging
Overview of Results

- The Tunable Ring Grooming Problem is NP-complete in the strong sense
- Problem remains NP-complete even for special cases
 - Only one wavelength, only one ADM per node, at least two ADMs per node
- Polynomial time approximation schemes for these special cases
- The “general case” that the number of ADMs is one or more appears to be the most challenging
- New approximation algorithm for the general case
The General Case

- Let C denote the capacity of a wavelength and let q be an integer such that every request has demand at most $\frac{C}{q}$, i.e.
The General Case

- Let C denote the capacity of a wavelength and let q be an integer such that every request has demand at most $\frac{C}{q}$, i.e.
 - If a request can demand as much as capacity C, then $q = 1$
The General Case

- Let C denote the capacity of a wavelength and let q be an integer such that every request has demand at most $\frac{C}{q}$, i.e.
 - If a request can demand as much as capacity C, then $q = 1$
 - If every request demands at most $\frac{1}{2}$ of C, then $q = 2$
The General Case

- Let C denote the capacity of a wavelength and let q be an integer such that every request has demand at most $\frac{C}{q}$, i.e.
 - If a request can demand as much as capacity C, then $q = 1$
 - If every request demands at most $\frac{1}{2}$ of C, then $q = 2$
- **Main Result:** A polynomial time approximation algorithm that guarantees solutions within $\frac{q}{q+1}$ of optimal, i.e.
The General Case

- Let C denote the capacity of a wavelength and let q be an integer such that every request has demand at most $\frac{C}{q}$, i.e.
 - If a request can demand as much as capacity C, then $q = 1$
 - If every request demands at most $\frac{1}{2}$ of C, then $q = 2$
- **Main Result:** A polynomial time approximation algorithm that guarantees solutions within $\frac{q}{q+1}$ of optimal, i.e.
 - If $q = 1$, profit is guaranteed to be within $1/2$ of optimal
 - If $q = 2$, profit is guaranteed to be within $2/3$ of optimal
 - If $q = 10$, profit is guaranteed to be within $10/11$ of optimal
The General Case: The Algorithm
The General Case: The Algorithm

1. Sort requests by non-increasing density into a list S
The General Case: The Algorithm

1. Sort requests by non-increasing density into a list S
2. Let $A = S$ if total demand $\leq CW\frac{q}{q+1}$, otherwise let A be the minimal prefix of S with total demand $> CW\frac{q}{q+1}$

-Pack A onto wavelengths with First Fit Decreasing (FFD)

-if some request in A was not packed

-Let r denote first request not packed by FFD

-Let B be the set containing r and all requests which were packed with demand \geq demand(r)

-Discard the request with the least profit from B

-if r was not discarded

-Pack r in place of the discarded request
The General Case: The Algorithm

1. Sort requests by non-increasing density into a list S
2. Let $A = S$ if total demand $\leq CW \frac{q}{q+1}$, otherwise let A be the minimal prefix of S with total demand $> CW \frac{q}{q+1}$
3. Pack A onto wavelengths with First Fit Decreasing (FFD)
The General Case: The Algorithm

1. Sort requests by non-increasing density into a list S
2. Let $A = S$ if total demand $\leq CW \frac{q}{q+1}$, otherwise let A be the minimal prefix of S with total demand $> CW \frac{q}{q+1}$
3. Pack A onto wavelengths with First Fit Decreasing (FFD)
4. if some request in A was not packed then
 5. Let r denote first request not packed by FFD
 6. Let B be the set containing r and all requests which were packed with demand $\geq \text{demand}(r)$
 7. Discard the request with the least profit from B
5. if r was not discarded then
 9. Pack r in place of the discarded request
The General Case: Analysis

- The approximation algorithm is proved correct and analyzed in the paper.
The General Case: Analysis

- The approximation algorithm is proved correct and analyzed in the paper.
- The running time is $O(R \log R + RW)$ where R is the number of requests and W is the number of wavelengths.
Heuristics and Experiments

- Heuristic “on top” of approximation algorithm
 - Performs $q/(q + 1)$-approximation algorithm for general case
 - Attempts to improve solution using heuristic rules, including splitting
Heuristics and Experiments

- Heuristic “on top” of approximation algorithm
 - Performs $q/(q + 1)$-approximation algorithm for general case
 - Attempts to improve solution using heuristic rules, including splitting
- Experiments using heuristic
 - Heuristic profit divided by optimal profit
 - Optimal found with linear programming
Experimental Results: Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Possible values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength capacity C</td>
<td>4, 8, 16</td>
</tr>
<tr>
<td>Number of wavelengths</td>
<td>5</td>
</tr>
<tr>
<td>Number of requests</td>
<td>16, 32</td>
</tr>
<tr>
<td>Probability α that a request has two ADMs (one ADM otherwise)</td>
<td>$\alpha = 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$</td>
</tr>
<tr>
<td>Demand limited to fraction $1/q$ of capacity</td>
<td>$q = 1, 2$</td>
</tr>
<tr>
<td>Density of request</td>
<td>Constant or variable ($\in U[1/2, 2]$)</td>
</tr>
</tbody>
</table>

Table: Parameters used in generating random instances
Sample Results

- When $q = 1$, approximation algorithm guarantees ratio of $\frac{1}{2}$

Figure: Worst ratios found in experiments. Parameters: 5 wavelengths, wavelength capacity $C = 16$, $q = 1$, $\frac{1}{2}$ of nodes have 1 ADM and remaining have 2 ADMs
Future Work

- Generalizing to allow requests to demand more than a wavelength’s capacity
- Tighter approximation bounds
- What if the direction of travel for a request is not pre-determined? Can we still find good approximation algorithms?
- Using splitting in algorithm, not just heuristic